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ABSTRACT

Current function identi�cation techniques have been mostly fo-

cused on a speci�c set of binaries compiled for a speci�c CPU archi-

tecture. While recent deep-learning-based approaches theoretically

can handle binaries from di�erent architectures, they require signi�-

cant computation resources for training and inference, making their

use less practical. Furthermore, due to the lack of interpretability of

such models, it is fundamentally di�cult to gain insight from them.

Hence, in this paper, we propose FunProbe, an e�cient system for

identifying functions from binaries using probabilistic inference.

In particular, we identify 16 architecture-neutral hints for function

identi�cation, and devise an e�ective method to combine them in a

probabilistic framework. We evaluate our tool on a large dataset

consisting of 19,872 real-world binaries compiled for six major CPU

architectures. The results are promising. FunProbe shows the best

accuracy compared to �ve state-of-the-art tools we tested, while it

takes only 6 seconds on average to analyze a single binary. Notably,

FunProbe is 6× faster on average in identifying functions than

XDA, a state-of-the-art deep-learning tool that leverages GPU in

its inference phase.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.
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1 INTRODUCTION

Function identi�cation is a pivotal task in binary analysis. Major

decompilation techniques, such as variable recovery [5], type recov-

ery [35], and high-level control-�ow restructuring [15, 52, 53, 62],
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operate at a function level, assuming Control-Flow Graph (CFG) of

a function is given. Binary-level control-�ow integrity approaches,

such as [65], adopt a function-level protection mechanism, too.

Conventional approaches to binary-level function identi�cation

employ various target-speci�c heuristics, which are often speci�-

cally devised to handle speci�c types of binaries, to overcome the

intrinsic di�culty of binary analysis. For example, Ghidra [42] and

FETCH [45] identify functions by leveraging C++ exception han-

dling information, which does not necessarily exist in all binaries.

Similarly, DDisasm [13] and FunSeeker [27] leverage target-speci�c

syntactic patterns, and Jima [2] harvests function pointers from an-

alyzing speci�c data sections. While such approaches are e�ective

in identifying functions in certain binaries, they are not generally

applicable to all binaries.

Learning-based approaches [6, 32, 60, 63] have been proposed to

overcome the limitations of conventional approaches. Particularly,

deep-learning-based approaches [48, 54, 64] recently demonstrate

high accuracy in identifying functions. While these approaches do

not require target-speci�c heuristics, they still su�er from three

critical limitations. First, their detection performance is highly de-

pendent on the training dataset used. Second, they require signi�-

cant computation resources for both training and inference. Thus,

applying them to large-scale binary analyses is not trivial in prac-

tice. Furthermore, those models are not interpretable, making it

di�cult to gain useful insight into the learned models. As such, one

cannot easily understand why a particular function is misclassi�ed,

hence further improving the model is challenging.

Therefore, in this paper, we seek to develop a function identi-

�cation algorithm that is general, e�cient, and interpretable. Our

approach should work for a wide range of binaries compiled for

various CPU architectures; should run fast on a regular desktop ma-

chine; and should not rely on a deep-learning model that is di�cult

to understand.

To this end, we identify 16 architecture-neutral hints, and com-

bine them to form a probabilistic model for function identi�cation.

The key intuition of our approach is that every function identi�ca-

tion heuristic has a certain level of uncertainty, which can naturally

be represented as a probability. For example, many tools heuristi-

cally regard a target of a call instruction as a function entry point,

but call targets are not always a function entry point in reality. Such

a heuristic is not always correct, but does provide a probabilistic

hint for function identi�cation. Hence, we combine those hints to

form a Bayesian Network (BN) representing causal relationships

between them. Our BN-based approach naturally allows us to rea-

son about why a particular address is identi�ed as a function entry

point because the posterior probabilities let us know the in�uence

of each hint on the address.
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There are mainly two challenges in designing our algorithm.

First, our approach should be generally applicable to any type of

compiler-generated binaries built with varying compilers, compiler

options, and target architectures. Second, our model, i.e., a BN, nat-

urally includes cyclic dependencies, which is expensive to handle, if

not impossible [30, 31, 51, 56]. Hence, we should devise an e�cient

way to perform probabilistic inference on our BN.

We address the �rst challenge by carefully selecting architecture-

and compiler-independent heuristics, such as those found in control

�ows between functions and basic blocks [25]. FunProbe employs

16 intuitive function identi�cation hints obtained either from exist-

ing work or from our own observations. We also tackle the second

challenge by exploiting the fact that our BN includes many un-

necessary edges. Speci�cally, we devise a novel approach, named

bogus dependency pruning, which heuristically removes edges as

well as loops from a BN. Our technique enables 12.6× faster func-

tion identi�cation with negligible accuracy drop as shown in our

experiments.

To realize these ideas, we implement FunProbe, a novel function

identi�cation tool that runs on raw (i.e., stripped) binaries. It lever-

ages our bogus dependency pruning technique to quickly decide

whether every instruction in the target binary should be consid-

ered to be a function entry point or not. We evaluate FunProbe on

a large-scale benchmark that includes 19,872 real-world binaries

compiled for six major CPU architectures. Our evaluation con�rms

that FunProbe shows the best accuracy compared to the �ve state-

of-the-art binary analysis tools, including IDA Pro, Ghidra, and

XDA, while it takes only 6 seconds on average to analyze a single

binary. Notably, FunProbe is 6× faster than XDA, a state-of-the-art

deep-learning tool, without the need for GPU resources. We also

demonstrate that FunProbe is complementary to XDA. By simply

feeding the output of XDA into FunProbe, we were able to achieve

99.9% of F1-score on our benchmark.

Overall, this paper makes the following contributions.

• We present a novel function identi�cation algorithm that

leverages a BN.

• We propose bogus dependency pruning to e�ciently derive

solutions from a BN.

• We design and implement FunProbe that incorporates our

novel function identi�cation algorithm.

• We publicize our tool to support open science: https://gith

ub.com/B2R2-org/FunProbe.

2 BACKGROUND AND MOTIVATION

This section describes the basic concept of Bayesian Network (BN)

and belief propagation, and motivates our research.

Notation. In this paper, % (- ) denotes the probability distribution

of a Boolean random variable - . For simplicity, we let % (G) be the

probability of - being true, i.e., % (G) = % (- = 1).

2.1 Bayesian Network & Belief Propagation

Bayesian Network (BN) is a set of Directed Acyclic Graphs (DAGs),

each of which represents causal dependencies between random

variables [46]. Each node in a BN is a random variable, and each

directed edge represents a dependency between two random vari-

ables. For example, an edge - → . means that - causes . (or . is

dependent on - ).

We use a BN to model the relationships between probabilistic

statements, such as “the probability of an address being a function

entry point”. Consider a basic block located at address U . Let �U be a

Boolean random variable indicating whether or not U is a function

entry point, and let �U be a Boolean random variable denoting

whether or not U is a target of a call instruction. We can then

represent a causal relationship between �U and �U with an edge

�U → �U in a BN: If �U is true (there is a call instruction whose

target is U), then �U is likely to be true (U is a function entry point).

Such a relationship can be denoted by a conditional probability

% (5U | 2U ), and we call it a hint throughout this paper because it

provides a hint for identifying functions.

Notice not every random variable in a BN is observable. In the

above example, �U is a hidden random variable, whose value cannot

be directly observed from analyzing a binary. On the other hand,�U
can be easily observed: We can disassemble a binary and see if there

is a call instruction whose target is U . Therefore, our goal in this

paper is to compute the marginal probabilities of hidden random

variables, e.g., % (5U ), based on the probability distributions of the

observed variables. This process is often referred to as probabilistic

inference [10], which does not scale well with the number of random

variables—the number of terms to consider for marginalization

grows exponentially to the number of hidden variables.

Belief propagation [46] is a technique that addresses the scal-

ability challenge with a dynamic programming method. When a

BN contains a loop, however, belief propagation cannot compute

the exact solution [40]. Thus, loopy belief propagation is used as an

alternative [22, 30, 40, 51], which iteratively runs belief propagation

until it converges or reaches a �xed time limit. However, when a

graph is large and highly connected, (loopy) belief propagation is

still computationally expensive [12, 22]. In this paper, we propose

an e�cient way to perform belief propagation on a large-size cyclic

BN by reducing the graph size (see §4.3).

2.2 Motivation

While hints are useful to identify functions, they do not provide

a de�nite answer. In this section, we motivate the need for a proba-

bilistic method by illustrating how one can combine various hints

collected from a binary to make a precise decision. To support our

claim, we ran Nucleus on dir, a binary taken from GNU Coreutils,

to identify functions from it. Figure 1a shows the disassembled code

snippets of the binary. To ease the explanation, we explicitly mark

function entry points in Figure 1a with symbols, although we used

a stripped binary when we ran Nucleus.

In this example, Nucleus identi�es functions using two hints:

(1) the target of a call instruction is likely to be a function entry

point, and (2) a no-op-like instruction is unlikely to be a function

entry point (as it is often a padding sequence). Unfortunately, both

hints su�er from a certain level of uncertainty. The �rst hint seems

legitimate as call instructions are designed to call a subroutine in

a program. However, there are cases where a call instruction is

used to retrieve the current Program Counter (PC). For example, a

code pattern “call +5; pop ebx”, where the target of call +5 is
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1 0x3bb0 <main>:

2 0x3bb0: push r15

3 0x3bb2: push r14

4 0x3bb4: mov r14d, edi

5 0x3bb7: push r13

6 0x3bb9: push r12

7 ...

8 0x4944: mov edi, 0xd

9 0x4949: call 58b0 <is_colored>

10 ...

11 0x5830 <dev_ino_free>:

12 0x5830: jmp 1b770 <rpl_free>

13 ...

14 0x58b0 <is_colored>:

15 0x58b0: mov edi, edi

16 0x58b2: lea rax, [rip+0x2217a7]

17 0x58b9: shl rdi, 0x4

18 0x58bd: add rdi, rax

19 0x58c0: xor eax, eax

20 0x58c2: mov rdx, QWORD PTR [rdi]

21 0x58c5: test rdx, rdx

22 0x58c8: je 58df

23 ...

(a) Disassembled x86-64 binary code.

1 0000f4 000010 0000c8 FDE cie=000030 pc=000058b0..00005909

2 DW_CFA_nop

3 ...

(b) Frame Description Entry (FDE) for is_colored.

Figure 1: Our motivating example taken from dir, a GNU

Coreutils binary compiled with GCC.

the pop instruction, is often used to obtain the current PC. Similarly,

the latter hint is not always correct: Compilers sometimes emit a

no-op-like instruction at a function entry point.

The primary challenge here is that there are cases where two

hints are in con�ict. Conventional approaches, such as Nucleus,

would simply follow one of them. In our example, the function at

0x58b0 is a target of the call instruction at 0x4949. Thus, Nucleus

can correctly identify the function with the �rst hint. However, the

function begins with a no-op instruction, which is deemed as an

invalid instruction by Nucleus based upon the second hint. Note

that mov edi, edi does not change the CPU state except for the

program counter, and is often used as a padding byte. The second

hint makes Nucleus disregard the function, thereby causing a false

negative error.

FunProbe handles such an intrinsic challenge with a probabilis-

tic framework. Intuitively, each di�erent hint provides a di�erent

clue about identifying function entry points, and we can represent

their relationships with a BN. If we collectively consider the ob-

served hints in the BN, we can make a decision in a more systematic

and holistic way.

For example, let us consider an additional heuristic developed

by FETCH [45], which leverages exception handling information

stored in the .eh_frame section of ELF binaries. The section stores

a sequence of Frame Description Entries (FDEs), each of which cor-

responds to a consecutive code chunk in the binary. Typically, each

code chunk represents a function (although there are exceptional

cases). Therefore, in our example, the FDE shown in Figure 1b

indicates that there is a code chunk located at 0x58b0, and it is

likely that the address indicates a function entry point. With such

an additional hint, we can say that 0x58b0 is more likely to be a

A

Binary

Program

Hint

Collector

Model

Builder
Inferencer �

Function
Entry Points

Hints BN

Figure 2: FunProbe architecture.

�58b0 �1b770

�58b0

#58b0

�58b0

% (5
5810 | 2

5810 )
= 0.65

% (55
810
| = 58

10
) =

0.4

% (55810 | 45810) = 0.65 % (511770 | 55810) = 0.65

Figure 3: Illustration of the BN generated from our example.

function entry point (two positives vs. one negative). As we will dis-

cuss, FunProbe provides a way to systematically make an informed

decision by gathering all the observed hints.

3 OVERVIEW

In this section, we �rst present the overall architecture of Fun-

Probe, and describe its work�ow with a running example shown in

Figure 1. We then discuss several technical challenges in designing

FunProbe.

3.1 FunProbe Architecture

Figure 2 illustrates the overall architecture of FunProbe, which

takes in a binary as input, and produces a set of function entry

points as output. FunProbe consists of three components: (1) Hint

Collector, (2) Model Builder, and (3) Inferencer. Hint Collector har-

vests hints by analyzing the given binary.Model Builder constructs

a BN using the collected hints. Inferencer runs belief propagation

on the BN to infer the marginal probabilities for each address in

the binary can be a function entry point.

We now demonstrate the component-wise work�ow of Fun-

Probe using the example binary shown in Figure 1. Note our system

runs on a stripped version of the binary.

3.2 Hint Collector

First, Hint Collector takes in a binary as input, and outputs a set

of hints taken from the binary. Formally, a hint is a conditional

probability for an address being a function entry point. Let �U be

a hidden Boolean random variable indicating whether or not U is

a function entry point. We can then de�ne a hint as a conditional

probability of the form % (5U | G) where - is a Boolean random

variable and G is a shortcut for - = 1 as we de�ned in §2. Hint

Collector analyzes the given binary to construct an inter-procedural

CFG (§4.1), and, it collects 16 di�erent types of hints from the CFG

as well as the metadata stored in the binary (§4.2).

From our example binary shown in Figure 1, Hint Collector

outputs a variety of hints including the following four: % (55810 |

25810), % (55810 | 45810), % (55810 | =5810), and % (511770 | 55810),
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where�5810 indicates that 0x58b0 is a call target, �5810 means that

there is an FDE for the instruction located at 0x58b0, and #5810

shows that the instruction located at 0x58b0 is semantically a no-op

instruction; It does not change any CPU state except for the PC.

Note that two hidden random variables, e.g., �11770 and �5810, can

also have a causal relationship. Let us consider the tail-call heuristic

used by many tools [11, 42, 45, 49], which regards a jump as a tail-

call when it crosses over a function entry point. This strategy is

based on the observation that compilers usually emit a function

body in a consecutive region. Therefore, if a jump instruction passes

over another function entry point, it means the jump target is likely

to belong to another function. In our example binary, there is a

jump instruction located at 0x5830, and there is another function

entry point at 0x58b0 in between the jump instruction and its target

(0x1b770). Therefore, if there is a function entry point between

0x5830 and 0x1b770, then 0x1b770 is also likely to be a function

entry point.

This observation provides atmost 89,919 distinct hints (% (511770 |

55831), % (511770 | 55832), · · · , % (511770 | 511765 ), in case the addresses

are �lled with single-byte instructions), which can easily bloat up

the BN, rendering our probabilistic inference ine�cient. Thus, we

reduce the number with a novel technique, named bogus depen-

dency pruning (§4.3).

3.3 Model Builder

Model Builder �rst builds a BN from the observed hints. Speci�cally,

each hint forms an edge in the resulting BN. Figure 3 illustrates

the BN obtained from our example binary. The BN only shows four

hints (i.e., edges) for simplicity.

Next,Model Builder assigns probabilities for each edge based on

the characteristic of each corresponding hint. Speci�cally, we use

two user-con�gurable probability values: one for positive hints and

another for negative hints. We say a hint is positive if it increases

the likelihood of the corresponding address being a function entry

point, and negative if otherwise. For example, % (55810 | 25810)

increases the likelihood of 0x58b0 being a function entry point

because it is used as a call target, thus, it is a positive hint. On

the contrary, % (55810 | =5810) decreases the likelihood of 0x58b0

being a function entry point because there is a no-op instruction at

0x58b0, thus, it is a negative hint.

Obviously, positive hints, such as % (55810 | 25810), should have a

high value (close to 1), and negative hints, such as % (55810 | =5810),

should have a low value (close to 0) in order for them to respectively

give a positive and negative in�uence to the probability of 0x58b0

being a function entry point. We introduce two user-con�gurable

parameters P+ and P− in order to assign the probability values for

positive and negative hints. In our current implementation, we use

P+ = 0.65 and P− = 0.4 by default, which are empirically chosen

best parameter values (see §5.2). Thus, in the previous example, we

assign 0.4 to % (55810 | =5810), and 0.65 to the other edges. The mar-

ginal probabilities, i.e., % (55810) and % (511770), are then computed

in the next step based on the assigned probabilities.

3.4 Inferencer

Inferencer takes in as input the initialized BN, and performs be-

lief propagation on the BN to compute the marginal probabilities.

That is, our goal here is to obtain % (�5810) and % (�11770) shown in

Figure 3. Once we have the marginal probabilities, we can decide

whether each address is a function entry point or not. In our current

implementation, we say an address U is a function entry point if

% (5U ) > 0.5. In our example, using belief propagation, Inferencer

returns % (55810) = 0.9216 and % (511770) = 0.9999. Since these prob-

abilities are higher than our threshold 0.5, we regard both of them

as a function entry point.

Recall from §3.2 that a tail-call detection strategy can easily pro-

duce thousands of hints, which makes the resulting BN complex

and highly connected with loops. Therefore, Inferencer does not

scale well with large binaries with many functions. We overcome

this challenge by introducing a novel technique, named bogus de-

pendency pruning, as we detail in §4.3.

4 FUNPROBE DESIGN

This section details the design of FunProbe. We �rst show how

FunProbe prepares an inter-procedural CFG to extract hints from

the binary (§4.1). Next, we present all the function identi�cation

hints that FunProbe utilizes and discuss howwemake them general

(§4.2). Finally, we present bogus dependency pruning, a technique

to simplify BNs to make probabilistic inference e�cient (§4.3).

4.1 Control Flow Graph Construction

To collect hints from binaries in architecture-independent and

compiler-independent manner, we mainly focus on structural fea-

tures that can be obtained from a CFG instead of observing instruc-

tion patterns. One can leverage existing binary analysis frameworks,

such as Ghidra and angr, to obtain CFGs from a binary, but those

tools typically involve heavy-cost analyses. Thus, we perform our

own lightweight analysis to quickly recover CFGs so that we can

apply our function identi�cation strategies to them. Note that our

CFG recovery is a preprocessing step for function identi�cation,

and our goal is far from constructing precise CFGs. Our analysis

runs in the following four steps.

(1) Linearly disassemble the given binary (§4.1.1).

(2) Detect non-returning function calls (§4.1.2).

(3) Resolve indirect branch targets (§4.1.3).

(4) Build inter-procedural CFG (§4.1.4).

4.1.1 Linear-Sweep Disassembly. Hint Collector �rst linearly dis-

assembles instructions from a given binary. One could use superset

disassembly [7] to completely recover all possible instructions in

the binary, but linear-sweep disassembly is widely known to be

e�cient in achieving high instruction coverage without many false

positives [3]. Therefore, we chose linear disassembly, a simpler

technique for our implementation.

One challenge here is to avoid disassembling embedded data in

code sections, which are commonly found in ARMv7 binaries. To

distinguish code and data, we examine every memory load from

the disassembled instructions, and �lter out instructions that are

referenced from another instruction.

4.1.2 Non-Returning Function Call Detection. Not every function

call returns. Thus, we cannot simply connect a CFG edge from a

call instruction to its fall-through instruction. Having a bogus edge
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Table 1: Function Identifcation Hints that FunProbe used.

Function Identi�cation Hints R. V. In�uence Used By

D
a
ta

1 Pointers in known pointer-array sections (e.g., .init_array) refer to a function entry point. %U + [13]
2 Non-strippable function symbols point to a function entry point. �U + [42, 55]
3 Relocation entries can specify a function entry point. 'U + [9, 13]
4 An FDE (Frame Description Entry) can point to a function entry point. �U + [2, 13, 27, 42, 45, 49]
5 Pointer-like values in data sections (e.g., .data) can refer to a function entry point. +U + [13, 59]

C
o
d
e

6 Call targets can be a function entry point. �U + All
7 When a jump edge crosses a function entry point, then the jump is likely to be a tail-call. �U + [11, 42, 45, 49]
8 If a call target is a jump instruction, then the jump target is likely to be a function entry point. ,U + New
9 Unreachable basic blocks are likely to be a function. *U + [2, 4, 13, 49, 55]
10 An unreachable basic block surrounded by two connected basic blocks is unlikely to be a function. (U − New
11 Padding sequences, such as no-op, are unlikely to be a function entry point. #U − [4, 13, 49]
12 If there are only no-op instructions between a jump instruction and its target then the jump is likely to be a no-op. �U − New
13 Inlined PC-getters are unlikely to be a function. �U − [2, 13, 49]
14 Conditional jump targets are unlikely to be a function entry point. �U − [42, 55]
15 Basic blocks before the main entry point of a binary are unlikely to be a function. �U − New
16 Basic block leaders are unlikely to be a function entry point. �U − All

R. V. stands for Random Variable.

can be problematic especially when a new function starts immedi-

ately after a non-returning function call. For example, a function

may start right after a call to exit, because exitwill never return.

Thus, it is imperative to identify non-returning function calls to

obtain precise CFGs.

Hint Collector employs a widely used mechanism for detect-

ing non-returning functions, which simply �nds calls to a known

non-returning function name [36]. This is possible because even a

stripped binary maintains the symbols of imported functions. In

our implementation, we use the same list of non-returning function

names used by Ghidra [42].

4.1.3 Indirect Branch Resolution. It is crucial to resolve indirect

branch targets to improve the coverage of a CFG. For example, when

an edge from an indirect branch to a basic block is missing, one

may falsely identify the missing block as a function. To recover the

targets of indirect jumps, we leverage a pattern-based heuristic used

by Ghidra [42]. Speci�cally, we �nd the corresponding jump table

based on the instruction patterns near the indirect jump instruction,

and parse the jump table to recover the indirect jump targets.

4.1.4 Inter-procedural CFG Building. Given a list of disassembled

instructions (§4.1.1), a set of non-returning function call sites (§4.1.2),

and a set of jump targets for each indirect branch (§4.1.3), Hint Col-

lector �nally builds an inter-procedural CFG. Additionally, we parse

exception handling information and connect edges from a try block

to its corresponding catch block(s).

4.2 Function Identi�cation Hints

FunProbe gathers 16 kinds of hints listed in Table 1. The �rst

column shows the information source. The second column describes

each hint. The third column shows which random variable is used

to represent each hint. For example, a random variable -U for an

address U can represent a hint % (5U | GU ). The fourth column

indicates how each hint in�uences function identi�cation: whether

it is a positive hint (+) or a negative hint (−). And the last column

speci�es which tool is using the corresponding heuristic. We mark

with “All” when it is used by every tool that we studied, and “New”

when we are unaware of a tool that employs a similar heuristic.

We note that all these hints rely on architecture-neutral metadata

and CFG-structural features. Such a design choice makes FunProbe

perform well across various binaries obtained from di�erent archi-

tectures and compilers as we will show through our experiments.

4.2.1 Hints from Data. Hints 1 and 2 are derived from ELF meta-

data. First, ELF binaries have special sections that contain function

pointers, such as .init_array and .fini_array. 1 states that

those values are always function addresses, i.e., % (5U | ?U ) = 1.0.

Second, there are function symbols that remain intact even after

stripping, e.g., GOT-based indirect jump targets in MIPS. 2 suggests

collecting such function addresses by analyzing symbols. Both 1

and 2 provide de�nite evidences for a function located at U , so we

assign the probability 1.0, i.e., % (5U | ·) = 1.0. For other hints, we

assign probability values based on the parameters P+ and P− .

Hint 3 provides a positive prediction for a code address U if it

is pointed to by a relocation entry: % (5U | AU ) = P
+. Relocation

entries often contain function pointers. For example, when a PIE

(Position Independent Executable) has a global function pointer, it

should be relocated at runtime by the loader. Hence, a relocation

section, e.g., .rela.dyn, of the binary should store a relocation

entry for the function pointer.

Hint 4 states that addresses found in .eh_frame are likely to

be a function address. Modern compilers have recently started to

provide exception handling information for every C function in

order to support C++ interoperability [20, 21]. Particularly, the

.eh_frame section contains a list of Frame Description Entries

(FDEs) to support stack unwinding when an exception occurs, and

such information allows us to infer function addresses [45].

Hint 5 suggests that a data value is likely to be a function address

if it is within a valid code address range. This heuristic is employed

by several reassemblers, such as Ramblr [59] and DDisasm [13].

The intuition is that a constant value in a data section is likely to

be a function pointer if it is within a valid address range.

4.2.2 Hints from Code. Hint 6 says that a call target is likely to

be a function entry point. Hint 7 states that a jump target is likely

to be a tail-call, i.e., the target is a function entry point, if the jump

crosses over a function entry point. Both hints are discussed in §3.2.
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Hint 8 handles a special case where a function body solely

consists of a single (unconditional) jump instruction (see Line 11–

12 of Figure 1a). Such functions usually act as a trampoline, passing

arguments to another function.

Hint 9 helps discover functions from unreachable parts of our

CFG. Since our CFG reconstruction (§4.1) is incomplete, it may leave

several basic blocks within the range of a function unreachable.

Such a code chunk is often referred to as a gap [33], and this hint

says that every basic block found in a gap is likely to be a function

entry point.

However, not every unreachable basic block is a function entry

point, and 9 alone can produce many false positives. Thus, we

have to employ several negative hints to �lter out false cases. Hint

10 says that gaps surrounded by connected basic blocks in our CFG

are unlikely to be a function entry point. This is because a function

body is usually a consecutive chunk of code. Thus, such a gap is

unlikely to be another function. Compiler-generated padding bytes

may form a gap, too. Thus, hint 11 helps disregard padding bytes

from being considered a function entry point. Compilers can also

use jump instructions to �ll a gap. For example, consider a code

pattern “ret; jmp LBL; nop; LBL: push ebp”. In this example,

the ret instruction is the end of a function, and push ebp is the

start of the next function. The jmp instruction between these two

functions is unreachable, and it merely acts as a dummy padding.

12 helps detect such a pattern to disregard the gap from being

considered as a function entry point.

Recall from §2.2, there are cases where a call instruction is used

to retrieve the current PC. Hint 13 helps prevent a call target of a

PC-getter from being considered as a function entry point.

Hint 14 states that jump targets of a conditional jump are un-

likely to be a function entry point because a conditional jump is

rarely a tail-call [44].

Hint 15 suggests that basic blocks before the main entry point,

i.e., _start, are unlikely to be a function entry point. This is because

GCC often puts rarely executed parts of a function, named with

the su�x .cold in the separate text sections. And the sections are

often relocated before the main entry point.

Hint 16 says that while a leader of a basic block is a potential

function entry point, most leaders are not. This is the nature of a

CFG; only the root node is a function entry, and the rest are not.

4.2.3 Generality of Function Identification Hints. We claim that

our function identi�cation hints in Table 1 are general enough to

analyze various kinds of binaries. Hint 1 – 4 use metadata com-

monly found in ELF binaries. Although our current implementation

handles only ELF binaries, other �le formats provide similar in-

formation, and supporting them should be straightforward. Hint

5 exploits a general characteristic of function pointers found in

binaries. Hint 6 – 16 , except 11 and 12 , are based on structural

properties found in CFGs. 11 and 12 are based on semantic proper-

ties of instructions, which can be captured by lifted Intermediate

Represent (IR) [28].

It is worth noting that modern compilers tend to put regular

functions after the entry point, i.e., _start. We found that GCC

often puts a part of a function (such as .part and .cold snippets)

before the entry, but the main body of the function is mostly after

the entry. We con�rmed that this is also the case for Clang, too.

Algorithm 1: Bogus Dependency Pruning Algorithm.

1 function BogusDenpendencyPruning(G)

2 G′ , V , E ← RemoveObservedNodes(G)

3 GC ← ComputePolytree(G′)

4 G′
C
← RestoreObservedNodes(GC , V , E)

5 return G′
C

4.3 Bogus Dependency Pruning

Although FunProbe employs only 16 hints, they can produce an

extremely large BNwith many loops, which makes traditional belief

propagation signi�cantly slow, if not impossible. In our dataset,

FunProbe builds a BN of 46K nodes and 255K edges per binary on

average. Therefore, we devise a novel approach to reduce the size

of a BN, while not sacri�cing much the accuracy.

We note that hint 7 is the major source of complexity. First, it

produces too many bogus dependencies as we discussed in §3.2.

Formally, we say a hint % (5U | 5V ) is bogus if U or V is not a function

entry point. From our dataset, we found that about 92% of depen-

dencies introduced by 7 were indeed bogus dependencies. Second,

7 can create cyclic dependencies, i.e., loops, in the resulting BN. For

example, three hints �U → �V , �V → �W , and �W → �U form a loop,

which prevents us from using the traditional belief propagation.

Therefore, we propose a novel method, named bogus dependency

pruning, to �nd out and exclude such bogus dependencies as well

as loops, so that the resulting graph becomes simple and loop-free,

allowing us to use the traditional belief propagation. Algorithm 1

describes the overall process of bogus dependency pruning. It takes

in as input a BN (G), which is a set of DAGs, and returns a modi�ed

BN (G′C ), which is a set of polytrees, as output. In Lines 2 and 4,

observed nodes in the given BN are temporarily removed (G′) and

restored (G′C ) in order to make the polytree calculation e�cient

(§4.3.1). In Line 3, we reduce each DAG in the modi�ed BN to a

polytree (§4.3.2).

4.3.1 Removing and Restoring Nodes. RemoveObservedNodes and

RestoreObservedNodes are respectively preprocessing and post-

processing steps of our dependency pruning process (§4.3.2). When

RemoveObservedNodes temporarily removes all the observed nodes

and their outgoing edges, removed nodes (V) and edges (E) are

returned and they are restored in RestoreObservedNodes. Note

that our polytree computation (§4.3.2) is not a�ected by removing

observed nodes because each of those nodes has a degree of one.

Therefore, the removed nodes and edges will always be included in

the resulting polytree anyways. By temporarily removing all the

nodes of degree one, we can make our polytree computation fast.

4.3.2 Computing Polytree. Given the modi�ed BN G′, a function

ComputePolytree transforms each DAG in G′ into a polytree. The

transformation runs in three steps. First, we convert a DAG into

an undirected graph. Second, we run Kruskal’s minimum spanning

tree algorithm [34] using our custom weight that prefers edges

with more positive hints. Formally, we de�ne a weightF (U, V) for

an edge �U → �V as

F (U, V) = −

(

<
∑

8=1

W(- 8
U ) +

=
∑

8=1

W(- 8
V
)

)

,
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where - 8
U means the 8-th observed Boolean random variable with

regard to the address U , and< and = are the numbers of observed

Boolean random variables for U and V , respectively. The function

W outputs 1 when the given random variable represents a positive

hint (+) and -1 for a negative hint (−), respectively.

For example, consider the edge �5810 → �11770 shown in Figure 3.

We can compute the weight of the edge as below.

F (5810, 11770) = − (W(�5810) + W(�5810) + W(#5810))

= − (1 + 1 − 1)

= −1.

This way, we can prefer edges that provide more positive in�uence

in detecting functions. Notice that we negatize the sum as Kruskal’s

algorithm prefers a smaller weight.

4.4 Implementation

FunProbe is written in 5.5K SLoC of F#. To parse ELF �le headers

and disassemble instructions for various architectures, we used

B2R2 [23], which provides an e�cient binary analysis front-end.

5 EVALUATION

In this section, we evaluate FunProbe to answer the following

research questions.

RQ1. How do the probability parameters a�ect the e�ectiveness

of function identi�cation? (§5.2)

RQ2. How much performance gain does bogus dependency prun-

ing provide? (§5.3)

RQ3. How well does FunProbe perform against the conventional

function identi�cation tools? (§5.4)

RQ4. Howwell does FunProbe perform against the learning-based

function identi�cation tools? (§5.5)

RQ5. Can FunProbe and learning-based approaches be comple-

mentary to each other? (§5.6)

5.1 Evaluation Setup

5.1.1 Benchmark. We build our benchmark by compiling three

popular packages, GNU Coreutils (v9.0, 107 programs), GNU Binu-

tils (v2.37, 15 programs), and SPEC CPU2017 (16 programs) written

in C and C++ languages. We consider the following compiler con-

�gurations to build our benchmark: (1) target architectures, (2)

position independence, and (3) code optimization levels. These con-

�gurations can largely a�ect the shape of resulting binaries, thereby

impacting the function identi�cation results.

Speci�cally, we chose 6 popular CPU architectures (x86, x86-64,

ARMv7, AArch64, MIPS, and MIPS64), 2 major compilers (GCC v8.4.0

and Clang v13.0.1), both PIE and non-PIE options, and six di�erent

compiler optimization levels (O0, O1, O2, O3, Os, and Ofast). This

gives us a total of 144 (= 6 × 2 × 2 × 6) di�erent con�gurations.

As a result, our benchmark consists of 19,872 binaries. To the best

of our knowledge, this is the largest benchmark used to evaluate

function identi�cation algorithms [32].

5.1.2 Ground Truth. To evaluate function identi�cation tools, we

need to obtain the ground truth of our benchmark, i.e., a set of

function entry points for each binary. Speci�cally, our ground truth

data deal with functions located in the .text section. We mainly

leveraged debugging information to gather ground truth data. Also,

Table 2: F1-scores achieved with di�erent parameter values.

P+

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.05 23.99 23.98 23.97 23.97 44.23 45.02 78.00 78.43 78.56

0.1 23.99 23.99 24.00 44.50 48.01 78.23 78.47 96.10 96.11

0.15 23.99 24.00 44.06 45.08 78.25 78.50 78.58 96.10 96.19

0.2 24.04 24.02 44.89 78.22 78.50 96.13 96.12 96.17 82.19

P−
0.25 24.05 44.46 78.04 78.45 78.62 96.14 96.19 82.22 82.21

0.3 24.06 45.06 78.44 78.63 96.17 96.20 82.23 82.21 79.45

0.35 24.08 78.31 78.63 96.18 96.22 82.23 82.22 79.47 79.19

0.4 45.10 78.65 96.23 82.23 82.27 79.51 79.37 79.06 78.80

0.45 96.17 82.27 79.54 79.12 78.91 78.73 78.60 78.40 78.18

we manually �ltered out several function symbols with .cold or

.part su�xes from GCC-compiled binaries [27]. Additionally, we

manually added the addresses of compiler intrinsic functions to our

ground truth data as they do not have debugging information.

5.1.3 Comparison Target. We selected �ve state-of-the-art tools for

comparison. Four of them use conventional binary analyses: IDA

Pro (v7.7.220118), Binary Ninja (v3.0.3233), Ghidra (v10.1.5) [42],

andNucleus (commit e3ab49d) [4]. One of themuses a deep-learning

model to identify functions: XDA (commit 068007c) [48]. We �ne-

tuned XDA on a subset of our benchmark following the recommen-

dation of the authors [47]. Speci�cally, we randomly selected 20%

(1296 binaries) of x86 and x86-64 binaries in our benchmark to

create about 640k training byte sequences. XDA is a representative

ML-based solution that is publicly available. To our knowledge, it

had demonstrated the best function identi�cation accuracy so far

in the literature. While there is another noteworthy tool named

DeepDi [64], it is closed-source, hence, we were not able to train a

model using our benchmark.

5.1.4 Our Environment. We used a server machine with 88 Intel

Xeon E5 cores, 512 GB of RAM, and 8 TITAN Xp GPUs to run

our experiments except for �ne-tuning XDA (as discussed in §5.5).

We used Docker 20.10.3 for running comparison targets. We used

Ubuntu 20.04 containers for FunProbe, Binary Ninja, and Ghidra,

and a Ubuntu 16.04 container for Nucleus as the authors suggested.

Lastly, we used a Windows 10 VM, but not a Docker container, for

IDA Pro due to the license issue.

5.2 Probability Parameter Selection

Recall from §3.3, FunProbe provides two user-con�gurable param-

eters P+ and P− to assign probabilities for positive and negative

hints, respectively. How do these parameters a�ect the accuracy

of FunProbe? Which values should we use to maximize the accu-

racy? To answer these questions, we ran FunProbe on a subset of

our benchmark with varying parameter values, and measured the

accuracy (F1-score) for each setting.

We picked 10 random binaries from GNU Coreutils for each

build con�guration (out of 144 build con�gurations with varying

compilers, architectures, and compiler options). This gives us a total
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Figure 4: Comparison between FunProbe and FunProbe-lbp

in terms of both execution time and accuracy.

of 1,440 binaries corresponding to 7% of the entire benchmark. We

then ran FunProbe on these binaries with 81 di�erent combinations

ofP+ andP− values. Note that we chose to use only a small number

of binaries to show that our parameter selection was not biased to

any speci�c con�guration.

Table 2 presents the measured F1-scores for each parameter

combination. The X-axis shows P+ values, and the Y-axis shows

the P− values. Each cell is �lled with a grey-scale color, where the

darker color indicates a higher F1-score.

The results show that P+ and P− are negatively correlated. The

biggerP+ value is chosen, the smallerP− value needs to be selected

to make FunProbe performwell. Therefore, the diagonal part of the

table shows higher accuracy results. In addition, F1-scores shown

in the table indicate that the performance of FunProbe is not too

sensitive to the choice of parameters.

Since the highest value was achieved by (P+ = 0.65, P− = 0.4),

we chose them as our default parameter values. Our experimental

results on the entire benchmark (see §5.4) also show that our choice

of default parameters is adequate. We leave it as future work to �nd

a better combination of parameters with more �ne-grained values.

5.3 Impact of Bogus Dependency Pruning

Recall from §4.3, bogus dependency pruning simpli�es the given

BN to be loop-free, which enables us to use traditional belief propa-

gation. To measure the impact of bogus dependency pruning, we

modi�ed FunProbe to run loopy belief propagation without bo-

gus dependency pruning, which is dubbed “FunProbe-lbp”, and

compared its performance against it of the original FunProbe.

Although loopy belief propagation is designed to handle BNs

with loops, the solution may not converge in some cases. Therefore,

it typically runs the algorithm only for a �xed number of iterations.

In our implementation of FunProbe-lbp, we use the following

convergence criteria for loopy belief propagation for maximum

10 iterations: For all basic block address U in the given binary, if

|%8−1 (5U ) − %8 (5U ) | < 0.0001 holds, then we consider the algorithm

is converged, where %8 (5U ) is a marginal probability obtained after

8 iterations of the algorithm. The algorithm stops when 8 > 10.

We ran FunProbe and FunProbe-lbp on the same benchmark

shown in §5.1.1 using Docker containers assigned with one CPU

core. Each binary in the benchmark was analyzed for maximum 12

hours. Figure 4 reports both their running time as well as F1-score

for 12 di�erent architecture-compiler combinations. Each bar in

Figure 4a represents the average running time in seconds, and each

bar in Figure 4b represents the average F1-score in percentage.

Overall, FunProbe was 12.6× faster than FunProbe-lbp. The

graph shows the computation cost of FunProbe is almost negligible.

Moreover, FunProbe-lbp failed to run 32 binaries within 12 hours

of timeout. On the contrary, FunProbe was able to analyze all the

binaries in our benchmark without any timeout. The average F1-

scores were nearly the same for both. The total average di�erence

was only 0.07%: FunProbe and FunProbe-lbp recorded 98.99% and

99.06% of F1-score, respectively. These results con�rm the impact

of bogus dependency pruning: it makes FunProbe scalable while

not sacri�cing much of the accuracy.

5.4 Comparison with Conventional Tools

To see how well FunProbe performs compared to conventional

approaches, we selected four state-of-the-art tools: Binary Ninja,

IDA Pro, Ghidra, and Nucleus. We ran each tool on our entire bench-

mark (§5.1.1). We set a timeout of one hour for each binary. When

reporting the �nal accuracy results, we excluded those binaries that

did not meet the timeout requirement.

Table 3 shows the precision (P), recall (R), F1-score (F1), execution

time (ET), and the number of binaries failed to analyze due to the

timeout (TO). Each row summarizes the results for each architecture

and compiler combination. A dash (-) mark indicates that the tool

does not support the architecture.

Overall, FunProbe achieves the best performance for all the crite-

ria. On average, FunProbe showed 99.37% precision, 98.70% recall,

and 99.03% F1-score. Notably, FunProbe outperformed all our com-

parison targets for every architecture and compiler combination in

terms of F1-score.

It is also noteworthy that FunProbe shows consistent perfor-

mance on every architecture and compiler combination we tested.

This result aligns well with our design principle that FunProbe

should be architecture- and compiler-agnostic. For example, on x86,

every other tool except FunProbe shows better performance on

GCC-compiled binaries than on Clang-compiled binaries. We can

also note how existing tools are �ne-tuned to handle GCC-compiled

binaries, which are more common in practice.

Notably, Ghidra showed the highest precision on MIPS binaries.

By investigating those function addresses falsely identi�ed by Fun-

Probe, we found that most of them are due to the imprecise CFG

recovery of FunProbe. Since MIPS binaries extensively use the

GOT base address to compute relative addresses, which can be tem-

porarily stored on the stack or registers, precisely recovering CFG

requires a sound data-�ow analysis. Since FunProbe relies only on

a lightweight analysis, it could miss out on many true edges.

In terms of execution time (ET), FunProbe spent only 6.30 sec-

onds on average for analyzing a binary in our benchmark. More-

over, FunProbe was able to analyze all the binaries without hitting
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Table 3: Function identi�cation performance in terms of Precision (P), Recall (R), F1-score (F1), Execution Time (ET), and # of

binaries failed due to TimeOut (TO).

Arch. Compiler
FunProbe Binary Ninja IDA Pro Ghidra Nucleus

P (%) R (%) F1 (%) ET (s) TO P (%) R (%) F1 (%) ET (s) TO P (%) R (%) F1 (%) ET (s) TO P (%) R (%) F1 (%) ET (s) TO P (%) R (%) F1 (%) ET (s) TO

x86
GCC 99.93 99.82 99.88 6.24 0 89.23 97.44 93.16 92.42 0 90.67 90.09 90.38 13.04 0 97.66 98.89 98.27 153.97 1 95.78 93.34 94.54 1.60 0
Clang 99.95 98.69 99.32 5.42 0 86.90 96.09 91.26 96.68 1 91.83 77.45 84.03 11.62 0 98.84 67.79 80.42 129.08 0 67.36 96.95 79.49 1.69 0

x86-64
GCC 99.84 99.69 99.77 5.55 0 92.76 96.79 94.73 92.90 0 93.12 85.93 89.38 10.33 0 97.72 98.33 98.02 151.54 0 95.52 91.71 93.58 1.60 0
Clang 99.97 99.75 99.86 6.00 0 89.48 94.93 92.12 82.64 0 93.05 83.93 88.26 10.17 0 99.82 98.63 99.22 143.19 9 92.07 94.52 93.28 1.63 0

ARMv7
GCC 99.65 96.76 98.18 11.41 0 93.69 98.34 95.96 56.34 0 92.34 96.97 94.60 30.87 0 99.41 61.44 75.94 138.54 2 - - - - -
Clang 97.15 96.69 96.92 11.67 0 91.82 95.85 93.80 62.95 0 89.56 92.99 91.24 22.01 0 99.76 66.99 80.15 94.27 5 - - - - -

AArch64
GCC 99.91 99.67 99.79 5.30 0 92.00 93.50 92.74 79.87 0 92.78 98.44 95.52 24.29 0 89.26 98.15 93.50 95.50 0 88.92 76.56 82.28 1.26 0
Clang 99.87 99.77 99.82 5.09 0 88.33 95.21 91.64 108.33 3 92.63 98.39 95.42 20.69 0 99.78 98.36 99.07 129.27 7 91.46 80.55 85.66 1.20 0

MIPS
GCC 97.39 98.24 97.81 5.23 0 84.28 96.42 89.94 112.58 10 86.70 81.79 84.18 38.93 0 99.31 79.67 88.41 176.35 6 - - - - -
Clang 99.68 98.53 99.10 4.16 0 84.37 95.82 89.73 103.79 0 89.04 76.18 82.11 48.89 1 99.75 75.09 85.68 159.06 4 - - - - -

MIPS64
GCC 99.63 98.06 98.84 4.42 0 - - - - - 86.22 83.94 85.06 34.84 8 99.81 64.69 78.50 181.57 4 - - - - -
Clang 99.48 98.74 99.11 5.09 0 - - - - - 86.09 76.80 81.18 38.64 0 99.83 63.80 77.84 165.53 3 - - - - -

Total 99.37 98.70 99.03 6.30 0 89.26 96.04 92.53 88.83 14 90.04 86.94 88.64 25.19 9 97.85 81.10 88.69 143.16 58 86.81 89.19 87.98 1.50 0

The numbers in bold represent the best result per row.

Table 4: Performance of FunProbe and XDA in terms of Pre-

cision (P), Recall (R), F1-score (F1), and Execution Time (ET).

Arch. Compiler
FunProbe XDA

P (%) R (%) F1 (%) ET (s) P (%) R (%) F1 (%) ET (s)

x86
GCC 99.93 99.82 99.88 6.24 99.77 99.62 99.70 35.29
Clang 99.95 98.69 99.32 5.42 99.84 99.89 99.87 37.02

x86-64
GCC 99.84 99.69 99.77 5.55 99.48 99.35 99.41 35.83
Clang 99.97 99.75 99.86 6.00 99.82 99.73 99.78 36.58

Total 99.92 99.49 99.71 5.80 99.73 99.65 99.69 36.18

The numbers in bold represent the best result per row.

the timeout. Although Nucleus records the best performance (1.5

seconds on average), the di�erence is less than 5 seconds, while

FunProbe signi�cantly outperforms Nucleus in terms of function

identi�cation accuracy.

While Binary Ninja, IDA Pro, and Ghidra show signi�cantly slow

running time overall, it is important to note that those tools perform

not only function identi�cation, but also other complex analyses,

making the comparison not entirely fair. However, we argue that our

technique can practically be used to improve binary analysis results

as a preprocessor of other binary analyzers because FunProbe can

correctly �nd more function entry points in a reasonable amount

of time.

5.5 Comparison with Learning-based Tools

How does FunProbe compare to an existing learning-based tool?

We now compare the performance of FunProbe against XDA to

answer this question. The comparison is made by running the tools

on x86 and x86-64 architecture binaries as XDA only supports

these architectures. In addition, we excluded the binaries that we

used to �ne-tune XDA for a fair comparison. In total, we used 5,412

binaries for the comparison.

We downloaded the pre-trained model of XDA from the o�cial

repository, and then used it to �ne-tune our own model using our

training dataset (see §5.1.3). We used a separate machine with a

powerful GPU (GeForce 3090 Ti), but the �ne-tuning process took

more than 2.5 days. On the other hand, FunProbe does not require

any training process, and this makes FunProbe more practical to

use on any benchmarks. For the inference process, we used our

server machine described in §5.1.4. Speci�cally, we assigned a single

CPU of our server machine to run both FunProbe and XDA, but

we had to additionally assign a single GPU to run XDA as it also

uses GPU in the inference phase.

Table 4 summarizes the comparison between FunProbe andXDA

on x86 and x86-64 binaries. Overall, both tools show comparable

performance, but FunProbe had a slightly better F1-score than

XDA. It records 99.7% F1-score on average whereas XDA shows

slightly a low (99.69%), F1-score.

In terms of execution time, FunProbe was considerably faster

than XDA even though XDA utilizes additional GPU resources. To

analyze a single binary, FunProbe spent 5.8 seconds on average

whereas XDA spent 36.18 seconds on average. That is, FunProbe

was overall 6.2× faster than XDA without regard to the training

cost. Therefore, we conclude that FunProbe is more scalable than

XDA while being as precise as XDA.

5.6 Combining FunProbe and XDA

Can FunProbe bene�t deep-learning-based approach or vice versa?

To answer this question, we conduct an additional experiment by

simply using FunProbe as a post-processor of XDA. Speci�cally,

we �rst ran XDA on the binaries used in §5.5. We then created a

positive hint (with P+) for each function entry point identi�ed by

XDA, and fed in those hints to FunProbe. This means FunProbe

will consider those XDA-generated hints as positive evidence to

�nd function entry points within the same probabilistic framework

we used.

As a result, the combined tool achieved 99.85%, 99.90%, and

99.88% in precision, recall, and F1-score, respectively. Given that

both FunProbe and XDA already accomplished high accuracy, it

is surprising that the combined tool achieves phenomenal perfor-

mance. XDA supplies function entry points that are not covered by

FunProbe. At the same time, FunProbe provides precision based

on our probabilistic hints. The synergy increases F1-score by 0.17%.

Additionally, running FunProbe as a post-processor of XDA is a

matter of a few seconds for each binary. This result con�rms that
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FunProbe and the state-of-the-art deep-learning approaches are

indeed complementary to each other.

We further analyzed what kind of functions that the combined

tool was able to identify while the original XDA failed. The most

common error cases corrected by the combined tool were where

a function contains only a few instructions. For example, a tiny

function containing two instructions (mov followed by ret) was not

identi�ed by XDA. Although we cannot directly understand the

reason for failure due to the lack of interpretability of the model,

we conjecture that this is because such a function is considered to

be a function epilogue than a prologue by XDA.

6 DISCUSSION AND FUTUREWORK

Supporting other �le formats. Currently, FunProbe only supports

ELF binaries. However, extending our support formore binary types,

such as Mach-O and PE, is straightforward because all the hints we

leveraged (summarized in Table 1) are derived from common infor-

mation that can be found in any binary format. For example, we

can apply 4 for PE binaries by analyzing RUNTIME_FUNCTION [38]

entries instead of FDE entries, because exception handling infor-

mation should be stored in any binary format.

Parameter tuning. Although FunProbe currently uses empiri-

cally chosen probability parameters (0.65 for positive hints and 0.4

for negative hints), one may use di�erent probabilities for each dif-

ferent hint. This is because each hint may have a di�erent impact on

function identi�cation. We believe �ne-tuning probability parame-

ters for each di�erent hint will further improve the performance of

FunProbe, and it is a promising direction for future research.

Better pruning strategy. While our bogus dependency pruning

signi�cantly improves the performance of FunProbe, it can poten-

tially remove critical (i.e., non-bogus) dependencies in our model.

Although it is beyond the scope of this paper to �nd a better prun-

ing strategy, one may consider using a more sophisticated pruning

strategy that can identify true bogus dependencies.

Obfuscation. FunProbe does not consider obfuscated binaries.

We leave it as future work to combine FunProbe with existing

deobfuscation techniques such as [61].

Integration with other binary analysis tools. FunProbe can en-

hance other binary analysis tools by serving as a preprocessor. For

instance, modern binary analysis frameworks, such as IDA Pro [19]

or Ghidra [41], provide APIs for creating a function at a speci�c ad-

dress. With such APIs, one may feed in the results from FunProbe

to those frameworks to accurately construct CFGs for each func-

tion because more accurate function identi�cation will enable more

precise CFG reconstruction. Furthermore, having precise CFGs is

crucial for complex binary analysis tasks such as reassembly [26]

and type recovery [35].

7 RELATED WORK

7.1 Binary Function Identi�cation

There has been signi�cant research e�ort on binary-level function

identi�cation for more than two decades. Early research focuses

on systematically recovering CFGs [9], thereby naturally identi-

fying functions by following call edges from recovered CFGs. For

example, Jakstab [29] performs data �ow analyses to determine

indirect call edges. There are several recent papers following this

direction [2, 4, 11, 49, 63]. For example. Nucleus [4] constructs inter-

procedural CFGs to �nd call targets as well as unreachable targets.

rev.ng [11] converts a binary to an LLVM IR, and performs a static

analysis on top of IR code to recover CFGs. All these approaches

su�er from the accuracy of the analyses, and thus, employ various

heuristics to improve the e�ectiveness of their analyses. However,

such heuristics are inherently architecture and compiler dependent.

Pattern-based approaches are widely adopted in mainstream

binary analysis tools [1, 8, 16, 36, 42, 57, 58]. For example, BAP [8]

and Dyninst [36] utilize pre-trained decision trees to identify func-

tions. IDA Pro [17, 18] and Ghidra [43] provide their own pattern

databases to match well-known function patterns. Recently Fun-

Seeker [27] shows that one can precisely detect functions from

Intel CET binaries by leveraging the usage patterns of endbr in-

structions. However, all these techniques rely on previously-known

patterns, and thus, inherently su�er from handling binaries with

unknown patterns. On the other hand, the hints that we use are

not speci�c to an architecture nor a compiler.

There is a recent metadata-based function identi�cation tech-

nique, named FETCH [45], which leverages exception handling

information to identify functions. Their technique signi�cantly out-

performs existing techniques, except for binaries without exception

information, such as C binaries generated from Clang.

There also have been various deep-learning-based approaches [48,

54, 60, 64]. Shin et al. [54] use a bi-directional and multi-layer RNN

to predict function boundaries. FID [60] leverages symbolic exe-

cution to extract feature vectors from binaries, to make its model

robust against highly optimized binaries. XDA [48] �rst pre-trains

a transformer model using Masked Language Modeling and self-

attention layers, and �ne-tunes the model for speci�c disassembly

tasks, such as function identi�cation. DeepDi [64] uses the R-GCN

model to learn instruction embeddings on Instruction Flow Graph,

and identi�es function entry points with trained instruction pat-

terns near the function. Although those approaches usually show

good accuracy, they su�er from the generalization problem, that is,

their performance relies on their training dataset [4, 32]. Moreover,

they consume a lot of computational resources during both train-

ing and inference stages. They often require the use of GPUs for

e�ciency, and even more resources when the model size is large.

On the other hand, FunProbe does not have any dependency on

training data, or need for computation resources.

7.2 Probabilistic Binary Analysis

There are also diverse probabilistic-model-based approaches on bi-

nary code analysis [6, 39, 50, 66]. Rosenblum et al. [50] �nd function

entry point idioms, which are instruction patterns of function pro-

logues. While they use a probabilistic model to learn a probability

distribution of such patterns, FunProbe directly analyzes various

hints in order to compute the probability of each instruction being

a function entry point. ByteWeight [6] creates a weighted pre�x

tree based on the patterns of function start instructions (or bytes).

Miller et al. [39] suggest a probabilistic disassembly algorithm. They

collect probabilistic hints for valid instructions to disassemble true-

positive instructions. OSPREY [66] utilizes a probabilistic graph
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model to recover variables and their type information from stripped

binaries.

7.3 Probabilistic Inference

Various approaches to derive the desired distribution from a given

probabilistic graphical model are suggested. Belief propagation [46]

can solve tree-like graphs to get an exact solution. However, it may

fail to converge or converge to the wrong solution if the graph con-

tains loops. To handle loopy graphs, loopy belief propagation [40]

iteratively runs belief propagation algorithm until it converges or a

certain number of iterations is reached. To approximate the solution

from loopy graphs, Junction Tree algorithm [24] transforms the

graphs into junction trees, and solves the graph. However, it does

not scale to handle large graphs. Variational Bayesian inference [14]

�nds an alternative distribution to approximate the complicated

distribution. It is known to converge fast, but it requires heavy

computation. Monte Carlo method [37] is another approach to

approximate the exact distribution based on random sampling. De-

spite its simplicity, it is hard to apply to our system because it does

not work well if the space is high-dimensional.

8 CONCLUSION

In this paper, we introduced a novel way to identify function entry

points from a stripped binary. The key idea was to regard a function

identi�cation heuristic as a producer of a probabilistic hint. We can

then combine those hints in a graphical model, i.e., a Bayesian

Network, and compute the probability of each address in the binary

being a function entry point. To boost the speed of our probabilistic

inference, we proposed a novel approach, named bogus dependency

pruning, and empirically proved its e�ectiveness. We implemented

FunProbe to realize these ideas, and showed its practical impact

by comparing its performance against �ve state-of-the-art tools in

terms of both speed and accuracy. Our experiments were performed

based on the benchmark consisting of 19,872 binaries compiled for

6 major CPU architectures, which is, to our knowledge, the largest

benchmark used in the �eld. As a result, FunProbe outperformed

all of the state-of-the-art tools we tested.

DATA AVAILABILITY

Our tool is available at https://github.com/B2R2-org/FunProbe.
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