
Testing Intermediate Representations
for Binary Analysis

Soomin Kim∗, Markus Faerevaag∗, Minkyu Jung∗, SeungIl Jung∗, DongYeop Oh∗, JongHyup Lee†, Sang Kil Cha∗

∗KAIST, Republic of Korea
{soomink, mfaerevaag, hestati, sijung, oh51dy, sangkilc}@kaist.ac.kr

†Gachon University, Republic of Korea
jonghyup@gachon.ac.kr

Abstract—Binary lifting, which is to translate a binary exe-
cutable to a high-level intermediate representation, is a primary
step in binary analysis. Despite its importance, there are only few
existing approaches to testing the correctness of binary lifters.
Furthermore, the existing approaches suffer from low test cover-
age, because they largely depend on random test case generation.
In this paper, we present the design and implementation of
the first systematic approach to testing binary lifters. We have
evaluated the proposed system on 3 state-of-the-art binary lifters,
and found 24 previously unknown semantic bugs. Our result
demonstrates that writing a precise binary lifter is extremely
difficult even for those heavily tested projects.

I. INTRODUCTION

Understanding binary code is crucial in software engi-
neering and security research. Source code is not available
when it comes to Commercial Off-The-Shelf (COTS) software,
malware, or legacy code. Even if we have access to the source
code, we cannot trust it when the compiler is not in the trusted
computing base [54]. Last but not least, even a trusted compiler
can produce binary code that is semantically different from the
source code [10].

In the past few decades, there has been much research
on binary code analysis and its applications including binary
instrumentation [13], [36], [40], [46], binary translation [20],
software hardening [16], [26], [59], [60], software testing [9],
[17], [27], CPU emulation [12], [42], malware detection [18],
[33], automated reverse engineering [21], [38], [39], [52], [57],
and automatic exploit generation [15].

The very first step in binary analysis is to convert a binary
executable into an Intermediate Representation (IR), which
precisely represents the operational semantics of the binary
code. Such a process is often referred to as binary lifting,
and nearly all of the above approaches involve binary lifting
either explicitly or implicitly. The converted IR is the basis
for any binary analysis techniques. Therefore, any bug in the
resulting IR can immediately invalidate the binary analysis
results. A taint-based malware detection system [58] can report
false alarms. Instrumented programs can fail or even crash. For
example, a single IR bug in QEMU indeed resulted in a failure
of the entire system emulation [5].

Unfortunately, engineering a precise binary lifter is notori-
ously difficult. First, the volume of an instruction set manual
is too large to comprehend. For example, the manuals for
Intel [2] and ARM [1] currently consist of 4,700 and 6,354
pages, respectively, at the time of writing. Even worse, the
number keeps increasing as new CPU features are introduced.
Furthermore, the semantics of CPU instructions are often
informally (and vaguely) defined in natural language. Finally,
there are undefined or undocumented semantics that are im-
plemented on a real CPU. Thus, developers often write IRs
on a trial-and-error basis, which is error-prone.

Despite these issues, there has been surprisingly little effort
on testing the correctness of binary lifters. The most relevant
work to date is that of Martignoni et al. [43], [44], which
attempted to leverage differential testing on QEMU [12] and
Bochs [37]. Particularly, they compared the state between a
physical and an emulated CPU after executing randomly cho-
sen instructions on both to discover any semantic deviations.

Although their technique can be applied to testing binary
lifters, it is fundamentally limited because its effectiveness
largely depends on randomly generated test cases. Typically,
semantic bugs in binary lifters are triggered only with specific
operand values. Therefore, a random test case generation does
not help much in finding such bugs. For example, the bsf
instruction of x86 searches the source operand for a least
significant set bit within a while loop that checks one bit
at a time. There are 32 different numbers of loop iterations
possible, but it is unlikely that randomly generated test cases
would cover all such cases. Let us suppose there exists a
semantic bug in an IR of bsf instruction when the maximum
number of iterations (= 31) is reached. This condition can
occur only when the source value is 231, and the probability
of generating the buggy operand value at random is 1/232.

The key question that motivated our research is: can we
test binary lifters without relying on randomly generated test
cases? One potential approach is to use traditional formal
verification [31]. Particularly, we can build a symbolic formula
that encodes all execution paths of an IR instance lifted from
a single machine instruction. We then check if the symbolic
formula matches the formal specification of the instruction.

978-1-5386-2684-9/17 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Technical Research

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

353

Although this is a totally plausible approach, there is no such
formal specification available for modern CPUs.

In this paper, we propose a novel approach to finding
semantic bugs in binary lifters, called N -version IR testing.
Our approach is inspired by N -version disassembly [47],
where the outputs of independently developed disassemblers
are compared to each other for a given input binary in
an attempt to find bugs in disassemblers. Unlike N -version
disassembly, however, we do not syntactically compare the
outputs of the lifters under test. Instead, we formally check the
semantic equivalence between N distinct IRs obtained from a
single binary instruction. Therefore, any semantic discrepancy
means that there is at least one semantic bug on the lifters
under test. Furthermore, our approach does not rely on random
test cases as in the previous approaches.

MeanDiff implements this idea to find semantic bugs on
existing binary lifters. Applying it to 3 existing binary lifters
found 24 previously unknown semantic bugs, which were
all manually confirmed, and reported to the developers. Our
experience shows that buggy IRs are widely used in existing
binary analysis techniques and tools, and can affect their
precision. Although our current implementation is specific to
x86 and x86-64, the proposed technique is general and can be
applied to other instruction set architectures.

Overall, this paper makes the following contributions:
1) We systematically study the characteristics of exist-

ing intermediate representations generated from open-
sourced binary lifters.

2) We propose N -version IR testing, the first systematic
approach to finding semantic bugs on binary lifters.

3) We design and implement a fully automated system,
called MeanDiff, which can evaluate the correctness of
binary lifters. We make our source code public at [3].

4) We test 3 state-of-the-art binary lifters, and demonstrate
the effectiveness of our system in terms of finding new
semantic bugs.

II. BINARY ANALYSIS AND IR

This section presents the motivation behind our research
by discussing why IR is essential in binary analysis. We first
start by defining several terminologies. We then describe the
characteristics of IRs, and summarize the current state-of-the-
art binary analysis tools.

A. Notation

We let LISA be an Instruction Set Architecture (ISA),
and LIR be an Intermediate Representation (IR). We use a
superscript to specify the name of an ISA or an IR. For
example, Lx86

ISA means x86 assembly language, and LVEX
IR is

VEX IR. An instance of an IR is a sequence of statements
defined in the semantics of the IR. We also call each statement
in an IR instance as an IR statement.

We denote a symbolic execution context by Γ. A symbolic
execution context is a map from a variable name to a symbolic
expression, e.g., Γ[k] denotes the symbolic expression that
corresponds to a key k. In our model, we also consider a

memory cell as a variable. We denote by Γ′ \ Γ an operation
over two execution contexts, which returns a map that includes
bindings in Γ′, but excludes bindings in Γ. A set of keys in Γ
can be accessed by Keys function: Keys(Γ). The number of
bindings in an execution context Γ is |Γ|.

A symbolic evaluation function ER evaluates an IR state-
ment, generated by a tool R, under a specific execution
context. For example, ER(s,Γ) is a function application that
evaluates an IR statement s ∈ LR

IR under the given execution
context Γ, which returns an updated execution context.

B. Representing the Semantics of Binary Code

Understanding binary code is difficult. Although CPU man-
uals describe the meanings of machine instructions in natu-
ral language, there exists no formal specification for them.
Furthermore, descriptions vary depending on the version of
the manual, and binary instructions typically have implicit
semantics that are not obvious from their syntax.

As an example, consider the following x86 instruction
that increments the value of the ECX register by one: inc
ecx. Although it is not obvious from the machine code,
the instruction can directly affect the value of the EFLAGS
register. Specifically, there are six status flags in the EFLAGS
(ZF, CF, PF, AF, SF, and OF), which can change their values
based on the computational result of the instruction. Notice, a
program can change its control flow depending on the values
of the status flags. In addition, the number of affected status
flags can also differ depending on the operation. From the
example instruction, only five status flags excluding CF can
change after executing the inc instruction.

Binary lifting, denoted by ↑, is an action that describes
the whole semantics of low-level binary code in a high-level
Intermediate Representation (IR). We define the term more
formally as follows.

Definition 1 (Binary Lifting). Binary lifting is a function ↑RS :
LS

ISA → LR
IR, where S is the name of an ISA and R is the

name of a target IR.

For example, ↑VEX
x86 is a function that takes in x86 bi-

nary code as input, and returns a translated VEX instance.
↑VEX

x86 (0x41) returns a lifted IR instance shown in Figure 1b
from a binary instruction 0x41, which is inc ecx when
decoded. We call a tool that performs binary lifting as a binary
lifter. Since the seminal work by Cifuentes et al. [19], various
binary lifters have been proposed to date.

In this paper, we define a term called binary-based IR
(BBIR) to distinguish two kinds of IRs: one from binary
lifters, and another from compilers. The distinction between
BBIRs and classic IRs from compiler theory [8] is mainly from
their expressiveness. IRs derived from source code represent
high-level language abstractions such as functions and loops.
However, BBIRs do not need to consider such language
constructs in their abstract syntax tree. Most binary analysis
tools such as BAP and Valgrind indeed define their own BBIRs
in order to express the low-level semantics of binary code.

354

TABLE 1
OPEN-SOURCED BINARY-BASED IRS.

IR Name Tool Name Explicit Self-contained
Disasm

Dependency x86 x86-64
FP

Support
SIMD

Support
Programming

Language
Introduction

(Year)

BIL BAP [14] 3 3 - 3 3 - G# OCaml 2011
DBA BINSEC [11] 3 3 - 3 7 - - OCaml 2011
ESIL Radare2 [7] 3 3 - 3 3 - C 2009
LLVM [35] Remill [55] 7 3 - 3 3 G# C++ 2014
Microcode Insight [25] 3 3 - 3 3 - - C++ 2012
REIL BinNavi [24] 3 3 - 3 3 - - Java 2008†

Sage III ROSE [49] 3 3 IDA Pro 3 3 G# G# C++ 2007‡

SSL
Boomerang [56] 3 3 - 3 7 - - C++ 2004
Jakstab [32] 3 3 - 3 7 Java 2008

TCG QEMU [12] 7 7 - 3 3 C 2009¶

VEX
PyVEX [4] 7 7 - 3 3 Python 2013§

Valgrind [46] 7 7 - 3 3 C 2003§

Vine BitBlaze [53] 3 3 - 3 3 - G# C & OCaml 2008

† The earliest release we found is BinNavi 1.5 in 2008.
¶ This is when TCG was first introduced in QEMU [6].

‡ The binary support of the ROSE is first presented in 2007.
§ The initial version of Valgrind [45] uses an IR called UCode.

1 v1 := low:32[ECX]
2 ECX := (low:32[ECX]) + 0x1:32
3 OF := ((high:1[v1]) = (high:1[0x1:32]))
4 & ((high:1[v1]) ˆ (high:1[low:32[ECX]]))
5 AF := 0x10:32 = (0x10:32
6 & ((low:32[ECX] ˆ v1) ˆ 0x1:32))
7 PF := ˜(low:1[let v3 = ((low:32[ECX]) >> 0x4:32)
8 ˆ (low:32[ECX]) in
9 let v3 = (v3 >> 0x2:32) ˆ v3 in

10 (v3 >> 0x1:32) ˆ v3])
11 SF := high:1[low:32[ECX]]
12 ZF := 0x0:32 = (low:32[ECX])

(a) A lifted IR instance of BAP [14].

1 t2 = GET:I32(ecx)
2 t1 = Add32(t2,0x00000001)
3 t3 = GET:I32(cc_op)
4 t4 = GET:I32(cc_dep1)
5 t5 = GET:I32(cc_dep2)
6 t6 = GET:I32(cc_ndep)
7 t7 = x86g_calculate_eflags_c(t3,t4,t5,t6):Ity_I32
8 PUT(cc_ndep) = t7
9 PUT(cc_op) = 0x00000012

10 PUT(cc_dep1) = t1
11 PUT(cc_dep2) = 0x00000000
12 PUT(ecx) = t1
13 PUT(eip) = 0x00000001; Ijk_Boring

(b) A lifted IR instance of Valgrind [46].

Fig. 1. BBIR instances lifted from an x86 instruction: inc ecx. In (a),
low:32[x] means taking low 32-bit value from x, and hex integers are
represented with their bit width.

Definition 2 (Binary-based IR). A BBIR is an IR that is used
to represent lifted IR instances from binary code.

C. Current State-of-the-Art Binary Lifters

We survey the existing binary lifters that are open-sourced,
and characterize them based on several criteria. As such,
we define two notions to describe BBIRs: explicitness and
self-containment. Both characteristics play an important role

in binary analysis. The explicitness helps in performing
control- and data-flow analyses, and the self-containment
allows analyzing binaries without having an undesirable over-
approximation.

First, the explicitness of a BBIR instance indicates whether
each IR statement updates only a single variable in the
execution context (Γ). Recall from §II-A that an execution
context is a set of variables in our model. Figure 1a shows
a BIL instance lifted from an x86 instruction inc ecx by
BAP. Each statement of the instance can only update a single
variable in the execution context. We say, the IR instance is
explicit. We now formally define the explicitness of an IR
statement as follows.

Definition 3 (IR Explicitness). Given a binary instruction i ∈
LS

ISA of an ISA S, an instance of an IR R lifted from i is
explicit iff. ∀s ∈ ↑RS (i) : |ER(s,Γ) \ Γ| = 1.

Being explicit is not always beneficial in terms of ex-
pressiveness. For example, VEX has a Compare-And-Swap
(CAS) statement, which guarantees an atomic swap operation.
Specifically, CAS checks if the target memory has a specific
(old) value, and only if the value matches, swap the memory
value with a given new value. By definition, compare-and-
swap operations, e.g., xchg instruction of x86, are not explicit
because they change both the source and the destination.
Valgrind can easily support such an instruction with a single
IR statement because it uses an implicit IR. But, BAP requires
multiple IR statements to express such an operation.

Another important criterion we consider is self-containment,
which essentially shows whether a lifted IR instance com-
pletely explains the semantics of the corresponding binary
code. For example, QEMU often relies on external functions
to express the semantics of a binary instruction. Consider a
logical AND instruction of x86: pand xmm0, xmm1. When

355

we lift the instruction to TCG, the BBIR of QEMU, the
IR instance simply passes both register values to an external
function called pand_xmm instead of articulating its operation
within the semantics of the IR. In this case, we say that the
IR instance is not self-contained, because it has a side-effect.

Definition 4 (IR Self-Containment). Given a binary instruc-
tion i ∈ LS

ISA of an ISA S, an instance of an IR R is self-
contained iff. for all IR statement s ∈ ↑RS (i), ER(s,Γ) is
determined without any side-effect.

Since TCG is designed for CPU emulation, it does not need
to be self-contained for its own purpose: external functions in
a TCG instance can simply be evaluated at runtime. The same
design decision appears in other IRs such as VEX. However,
if an IR is not self-contained, analysts need to implement a
rule for every external function in the lifter in order to write
an analyzer, which requires a significant engineering effort.

Figure 1 shows two BBIR instances lifted from an x86
instruction inc ecx. First, the IR instance from BAP (Fig-
ure 1a) has seven assignment statements in total including the
ones for the status flags of the EFLAGS. The IR instance
is explicit because every IR statement affects only a single
value of the CPU state at a time. The IR instance is self-
contained, because the IR instance completely contains the
whole semantics of the instruction.

On the other hand, the VEX instance obtained from the
same instruction (Figure 1b) using Valgrind is neither explicit
nor self-contained. In Line 7, there is a call to an external
function x86g_calculate_eflags_c, which computes
all the status flags and returns the result in a single integer.
Since it uses an external function, it is not self-contained. Fur-
thermore, Valgrind does not directly refer to the status flags.
Instead, it uses variables (cc_op, cc_dep1, cc_dep2,
and cc_ndep) that store abstract information about the ma-
chine status such as what is the most recently used operation.
This is to efficiently compute the EFLAGS only when it is
needed. However, such an abstract variable represents multiple
values (e.g., values of status flags) in the context of a real CPU.
Therefore, the IR is implicit.

Table 1 summarizes the current state-of-the-art binary lifters
and their BBIRs. The first and the second column of the table
show the names of BBIRs and binary lifters respectively. The
third column indicates whether a binary lifter emits explicit
IR instances. If there is at least one implicit operation in their
semantics, we mark them with 7, and 3otherwise. The fourth
column shows whether a binary lifter produces self-contained
IR instances. If a binary lifter can generate an IR instance
that has one or more external function calls, we mark it with
7, and 3otherwise. When considering explicitness and self-
containment of BBIRs, we exclude operations that cannot be
modeled without the help of external environments such as
system calls. The fifth column shows whether a binary lifter is
dependent on IDA pro, a commercial disassembler. There is a
lifter (ROSE) that uses the COTS disassembler, but we include
it because its IR implementation is open sourced. The sixth
and seventh column specify whether a binary lifter can lift

x86 and x86-64 instructions respectively. Finally, the eighth
and ninth column indicates whether a binary lifter supports
floating point and SIMD operations respectively: the means
a full support, and the G# means a partial support.

III. N -VERSION IR TESTING

Given the difficulty of writing the semantics for binary
instructions, it is not surprising to see numerous semantic bugs
on binary lifters. Even a heavily-tested tool such as QEMU
has about 10 bug fixes on their binary lifter every year. This
is indeed the primary motivation of our research: we want to
build a system that can systematically test the correctness of
binary lifters. Most of the binary analysis tools in Table 1 were
introduced in the 2000s, and have been used in various areas
of research. Therefore, any semantic bugs on binary lifters can
have a huge impact on the existing techniques and tools.

We propose a novel testing approach, called N -version IR
testing, which leverages a symbolic analysis to check the
semantic difference between BBIR instances1. If one of the
IR instances is semantically different from the others, then
it means we found a semantic bug in at least one of the
binary lifters. Once we found a semantic discrepancy, we can
manually verify which IR instance is buggy.

To describe our approach, we first define the notion of
symbolic equivalence, which is mainly based on that of
Person et al. [48]. Let S be the name of an ISA, and R be the
name of a self-contained BBIR. Suppose a lifted IR instance
↑RS (i) consists of n statements ↑RS (i) = {s1, s2, . . . , sn}. Then
we can evaluate each statement in the IR instance with the
evaluation function ER for an initial execution context Γ to
obtain the final execution context Γ′:

Γ′ = ER(sn, ER(. . . , ER(s2, ER(s1,Γ)) . . .)).

A symbolic summary of an IR instance shows what the IR
instance computes. Intuitively, it can be expressed as a set of
updated variable mappings from the execution context after
evaluating the IR instance: Γ′ \ Γ.

Definition 5 (Symbolic Summary (Σ)). Given an ISA LS
ISA

and an IR LR
IR, a symbolic summary for a binary instruction

i ∈ LR
IR is

Σ
(
↑RS (i)

)
= Γ′ \ Γ

where Γ′ and Γ are defined as above.

Finally, we say two BBIR instances are semantically equiv-
alent when the output variables of their symbolic summaries
have one-to-one correspondence, and each corresponding sym-
bolic summary pair is equivalent to each other.

Definition 6 (Semantic Equivalence of BBIRs). Given two
BBIRs R and R′, and a binary instruction i of an ISA S,
the lifted IR instances ↑RS (i) and ↑R′

S (i) are semantically
equivalent when:

1 In this paper, we only test BBIRs generated from a single machine
instruction, but the notion of N -version IR testing is general enough to be
applied to BBIRs lifted from multiple instructions.

356

1) Keys(Σ(↑RS (i))) = Keys(Σ(↑R′

S (i))).
2) ∀k ∈ Keys(Σ(↑RS (i))) : Σ(↑RS (i))[k]⇔ Σ(↑R′

S (i))[k].

The Algorithm. With the above definitions, we present the
algorithm of N -version IR testing, a technique to test the
correctness of binary lifters. At a high level, N -version IR
testing consists of five major steps: STREAMGEN, LIFT,
TRANSLATE, SUMMARIZE, and TRIAGE. Each component
behaves as follows.
• STREAMGEN: takes in an ISA LS

ISA as input and returns
a sequence of instructions. Since there are too many
instructions to consider, we systematically select a set
of instructions based on their syntactic structure (§IV-A).

• LIFT: performs binary lifting ↑RS . Specifically, it takes in
an instruction i ∈ LS

ISA generated from STREAMGEN as
input, and outputs the corresponding BBIR instance. The
target BBIR (R) depends on the lifter we use (§IV-B).

• TRANSLATE: translates a BBIR instance to a UIR in-
stance, which is a unified intermediate representation that
we use in our analysis. The reason we employ this step
is mainly due to the different characteristics of BBIRs.

• SUMMARIZE: takes in a UIR instance as input and
returns the corresponding symbolic summary for it. This
step includes (1) an input/output variable identification
(§IV-C), and (2) a symbolic analysis (§IV-D).

• TRIAGE: takes in a set of bugs found, a target instruction,
and N distinct symbolic summaries as input. If there is no
semantic discrepancy between the symbolic summaries,
it simply returns the unmodified set. Otherwise, it returns
an updated set that includes the current target instruction,
because it is the buggy instruction we found (§IV-E).

The crux of the N -version IR testing algorithm is shown
in Algorithm 1. The main function (testFn) for N -version
IR testing takes in as input a target architecture and a list
of binary lifters to test. It outputs a list of semantic bugs
found. We note that our algorithm is sound in that we do not
report false alarms. However, the algorithm is not complete,
because it may miss bugs on the binary lifters under test. For
example, when both binary lifters under test have the same
buggy implementation, then we may miss the bug.
Example. We now describe the steps in Algorithm 1 with a
concrete example. Suppose we are testing two binary lifters
on x86: BAP [14] and Valgrind [46]. We let one of the x86
instructions returned from STREAMGEN in Line 3 is inc
ecx. Then the algorithm in the for loop (from Line 4 to Line 9
in Algorithm 1) works as follows.

1) We set summaries with an empty list (Line 4).
2) Since we assume two binary lifters, the inner for loop

(Line 5–9) will iterate two times for each binary lifter.
3) In Line 6, we lift the binary instruction to a BIL instance

(Figure 1a). We then translate the IR instance to a UIR
instance (Line 7). If the source IR is implicit or not
self-contained, the translation becomes challenging. We
address this issue in §IV-B.

4) We then compute the symbolic summary, which maps
output variables to symbolic expressions, from the trans-

Algorithm 1: N -version IR testing
1 function testFn(LS

ISA, lifters)
2 bugs← ∅
3 for i in STREAMGEN (LS

ISA) do
4 summaries← [·] // An empty list
5 for ↑RS in lifters do
6 bbir =↑RS (i) // Lift
7 uir = TRANSLATE (bbir)
8 s = Σ(uir) // Summarize
9 summaries← summaries + s

10 bugs← TRIAGE (bugs, i, summaries)

11 return bugs

lated IR instance, which consists of two major steps: a)
variable identification, and b) symbolic execution.

a) From the IR instance, we identify the ECX register
as both an input and an output variable, and 5 status
flags (OF, AF, PF, SF, and ZF) as output variables.
To achieve this, we perform a simple data-flow
analysis: see §IV-C.

b) Once we identify the output variables, we run
symbolic execution on the IR instance to obtain
symbolic summaries for each of the output vari-
ables. In this case, the only input variable is ECX,
so we let the variable as symbolic, and evaluate the
IR instance. For example, in Line 2 of Figure 1a,
the output variable ECX has a symbolic expression
ECX + 1. In this way, each output variable has
the corresponding symbolic expression of the input
variable(s), e.g., ECX 7→ ECX + 1.

5) In Line 9, we add the obtained symbolic summary to
summaries, and repeat this process for each lifter.

6) In Line 10, we check the semantic equivalence between
symbolic summaries obtained from the previous steps.
For simplicity, let us assume that each BBIR instance
has only a single output variable ECX, i.e., we do not
consider the EFLAGS register. Then, the final symbolic
summaries from both BAP and Valgrind for ECX would
be ECX + 1. Recall from Definition 6, we consider two
conditions to decide whether the symbolic summaries
are semantically equivalent. First, we check whether the
set of output variable names are equivalent. Second, we
check for each output variable whether the correspond-
ing symbolic summaries are equivalent: ECX + 1 ⇔
ECX + 1. In this example, we conclude that both BAP
and Valgrind emits semantically equivalent IR instances
from the given instruction.

IV. DESIGN

In this section, we describe the design of MeanDiff, an
automated system that implements the N -version IR testing.
Following the focus of MeanDiff at a higher level, we provide
a detailed review of the challenges this research project has
overcome. Using the pipeline, illustrated in Figure 2, these
challenges will be described in a chronological order, follow-
ing the process from input to output.

357

A. Instruction Stream Generation
MeanDiff checks the semantic equivalence per each instruc-

tion returned from STREAMGEN. Ideally, one can generate
every possible instruction of a given architecture in order to
completely test BBIRs. However, this is infeasible due to the
huge number of possible instructions to consider. For example,
there are more than 232 add instructions on x86 even though
we only consider the ones that have EAX as the destination
operand: “add eax, 0x0”, “add eax, 0x1”, . . . , “add
eax, 0xffffffff”, “add eax, eax”, “add eax,
ebx”, and so forth.

Notice, this naı̈ve approach already requires radically
few test cases compared to existing differential testing ap-
proaches [43], [44], because N -version IR testing does not
require employing test cases for all possible states of each
instruction. Particularly, a symbolic summary for a given IR
instance encapsulates the semantics of the instance for all
possible input values.

However, we can further reduce the number of test cases
to consider by exploiting the nature of symbolic evaluation.
Specifically, instructions with the same opcode, but with
different register names will end up having the symbolic
summaries that are syntactically similar: only the name of
the symbols are different. For example, both add eax, ebx
and add ecx, edx will produce two symbolic summaries
that produce the same result when applied to N -version IR
testing. With this intuition, MeanDiff generates test cases
for every combination of available operand types of a given
opcode as follows.

1) For operand type reg, reg, we generate two test
cases: one with the same register, another with different
registers for each operand.

2) For operand type reg, mem and mem, reg, we
generate single test case for every possible address-
ing mode. That is, we consider [reg], [reg +
reg], [reg + displacement], [reg + reg +
displacement], and so forth. We use an arbitrary
value for the displacement.

3) For operand type reg, imm and mem, imm, we pick
three constant values for the immediate operand to
generate test cases: 0, 42, and the maximum unsigned
value based on the bit width of the immediate. For ex-
ample, we consider the following three cases: add al,
0x0, add al, 0x42, and add al, 0xff. This is
to cover semantic errors that are triggered only when the
immediate has a specific value.

While generating test instructions, STREAMGEN removes re-
dundant instructions as different opcodes may be decoded
to the same instruction on x86. For example, 0x0118
and 0x011c20 are both add [eax], ebx on x86. In
our STREAMGEN implementation, it generates 323,928 and
1,161,430 valid instructions on x86 and x86-64 respectively.

B. IR Lifting and Translation
Obtaining BBIR instances from binary lifters requires vary-

ing amounts of manual effort. Some systems such as BAP [14]

STREAMGEN
arch

insn

LIFT TRANSLATE
BBIR

LIFT TRANSLATE
BBIR

LIFT TRANSLATE
BBIR

…

insn

insn

BAP

VEX

BINSEC

SUMMARIZE

SUMMARIZE

SUMMARIZE

UIR

UIR

UIR

TRIAGE

Symbolic
summary
!

!

! bugs

Lifters

Generating /
filtering

test instructions

Fig. 2. MeanDiff Architecture.

and BINSEC [11] provide APIs to lift binary code to their
own BBIR instance as well as to access the Abstract Syntax
Tree (AST) nodes of BBIR instances. However, other systems
such as Valgrind [46] do not provide such functionalities.
PyVEX [4] ships with the manually extracted VEX module
from the Valgrind project, which provides a python API to
access the ASTs. Our LIFT implementation uses PyVEX.

As discussed in §II-C, the spectrum of semantics supported
by the BBIRs differs. Specifically, we consider the explicitness
and the self-containment of BBIRs. First, the explicitness of
each IR varies. In BBIRs such as BIL and DBA, the EFLAGS
register is represented by explicitly declaring each flag as an
output variable. VEX from PyVEX, on the other hand, uses a
condition code register which is used through lazy evaluation.
To handle this, the EFLAGS has to be manually computed
for each instruction. This makes the semantics conform with
that of BAP and BINSEC. Similarly, there are some implicit
operations such as compare and swap (CAS) that are only
supported by some BBIRs.

There is also the question whether the BBIR at hand is
self-contained, following Definition 4 in §II-C. An IR that is
not self-contained may call an external function within the IR
instance. Recall from the example in Figure 1b, the external
function call to x86g_calculate_eflags_c within the
IR instance makes it difficult for us to compare the semantics
of it with other IR instances.

To handle these challenges, we define a Unified Intermediate
Representation, UIR, used for unifying every BBIR into a
single form. UIR is a simple, but Turing-complete language,
which consists of a few primitive arithmetic and logical
operations. It is also designed to be explicit and self-contained.
Due to the page limit, we do not show the detailed syntax of
UIR. Interested readers should refer to our web page [3]. We
note that employing a unified representation benefits the rest
of our analysis as well: we do not need to write the same
analysis routine for every BBIR under test.

Translating BBIR to UIR is challenging and requires sig-
nificant engineering efforts. For example, we replaced the
external functions of VEX that compute the EFLAGS. In
our experiment, we employed a conservative approach instead
of fully implementing the conversion from BBIRs to UIR.
Particularly, whenever we encounter a BBIR instance that is
not explicit or not self-contained during the analysis, we omit

358

such an instruction from our testing set unless it is specifically
handled by our translators (TRANSLATE). We leave it as future
work to shrink the semantic gaps between different BBIRs
by implementing more conversion rules. We note, however,
that omitting such instructions do not affect the soundness
guarantee of our analysis.

C. Data Flow Analysis

The first step of SUMMARIZE is to identify input/output
variables from a translated UIR instance. To determine input
variables from an IR instance, we apply a classic use-def
analysis. Every node in the Use-Def (UD) chain that has
outgoing edges, but no incoming edges, is classified as an
input variable. In other words, variables that are used, but
never defined are input variables.

On the other hand, we cannot simply identify output
variables with a data-flow analysis. One may think that all
variables that are declared, but never read, must be output
variables. However, this is not the case for many IRs. For ex-
ample, in Figure 1, ECX is an output variable while also being
used in the assignment of OF. To overcome this challenge, we
use the knowledge of the given ISA. Specifically, we check for
every statement s in the given IR instance whether s assigns
a value to a variable that has the name of known registers and
status flags. If so, we make all such variables to be an output.

D. Symbolic Execution

Recall from §III, the second step of SUMMARIZE is to
symbolically execute each of the lifted IR instances in order
to generate symbolic summaries. We address two challenges
in this phase: (1) loop handling challenge, and (2) symbolic
memory challenge. The first challenge is simply handled by
unrolling loops once. Although we can only see a limited
number of execution paths, our analysis is still sound: it does
not produce false alarms. In this subsection, we focus on how
we handle the second challenge.

Symbolic memory is a traditional problem in symbolic
execution where a symbolic address is used to access a
memory value. One may represent a symbolic memory access
with an if-then-else chain accounting for every possible values
in the memory, but this may result in too complex symbolic
expressions to be solved in practice. There are several existing
symbolic access policies [50] in dynamic symbolic execution
such as pointer concretization, but this is not an option for our
approach since we rely on static symbolic execution.

In our implementation, however, the symbolic memory
challenge is not really an issue, because MeanDiff only focuses
on BBIRs generated from a single machine instruction (Recall
§III). Notice, it is extremely unlikely to have a machine
instruction that uses a non-memory operand to access memory.
Furthermore, the address of a memory operand is typically not
used for other purposes than for accessing the memory.

Therefore, we can simply let a memory access be a symbolic
variable if it is used as input. When lifting an x86 instruction,
“mov ebx, [eax]”, for example, MeanDiff replaces the
[eax] operand with a symbolic variable mem_EAX. However,

simply replacing memory expressions into a symbolic variable
can be problematic when two different lifters express the
same memory operand in a totally different manner. For
example, the address of a memory operand [eax + ebx]
can be represented either as eax + ebx or as ebx + eax.
Furthermore, a single instruction may access more than one
memory cells. This means we need to be able to distinguish
memory expressions, and give a unique symbolic name for the
same memory expressions.

To determine if two memory expressions are the same,
we apply a series of simple transformation rules such as
expression reordering (e1 + e2 = e2 + e1), strength reduction
(e× 2n = e << n) and arithmetic simplification (e + 0 = e)
to both, and check if the expressions are exactly the same.

E. Triage

The final step of N -version IR testing is TRIAGE, which
checks the semantic equivalence between symbolic summaries
obtained from SUMMARIZE. Given N symbolic summaries,
MeanDiff first checks if they have the same set of output
variables. If not, we add the corresponding instruction to our
bug database. Otherwise, MeanDiff constructs a final formula
by combining symbolic expressions for each of the output
variables. It solves the formula using the Z3 SMT solver [23].
If we found any counter-example that gives two or more
distinct values when evaluating symbolic expressions of the
same output variable, it means we found a bug.

The Intel manual specifies that register values can be marked
as “undefined” after executing an instruction. For example,
the AF flag is undefined after executing logical operations.
Some lifters such as BAP explicitly marks the AF as undefined
in this case, but others such as BINSEC would simply let the
AF unchanged. In order to handle such a case, we do not
compare undefined output variables in our implementation.

F. Implementation

We applied N -version IR testing on 3 existing binary
analysis tools in Table 1: BAP, PyVEX (a wrapper for Val-
grind’s VEX), and BINSEC. We have implemented translators
(TRANSLATE) for each of the tools: 400 lines of OCaml for
a BIL-to-UIR translator; 300 lines of OCaml for a DBA-to-
UIR translator, and 2.0k lines of Python for a VEX-to-UIR
translator. We have also implemented our SUMMARIZE and
TRIAGE module with about 2.0K lines of F# code. We made
the source code public at [3].

V. EVALUATION

To evaluate MeanDiff, we focus on the following questions:

1) How many binary instructions can STREAMGEN gen-
erate? And how many of them can be handled by the-
state-of-the-art binary lifters?

2) Can MeanDiff find semantic bugs in the binary lifters?
3) How do the bugs look like? And how difficult it is to

write precise binary lifters?

359

A. Environment Setup

We ran our experiments on 64-bit Ubuntu 16.04.3 system,
with 2 22-core CPUs, Intel Xeon E5-1600 family, with 256GB
RAM. We downloaded three binary analysis tools, i.e., binary
lifters: (1) BAP 1.2.0 (released Feb. 10th, 2017); (2) PyVEX
6.7.4.12 (released Apr. 12th, 2017); and (3) BINSEC 0.1 (re-
leased Mar. 1st, 2017). All the numbers reported in this paper
is based on the experimental results on these binary lifters. We
tested the lifters on both x86 and x86-64 instructions, with the
exception of BINSEC that does not support an x86 ISA. The
total experiments took approximately 2 days.

B. Binary Lifting

Recall from §IV-A, our STREAMGEN generated 323,928
and 1,161,430 instructions on x86 and x86-64 respectively.
Firstly, we recorded the numbers of successfully lifted BBIRs
for each binary lifter under test to later use them in the
evaluation of MeanDiff.

Table 2 shows the result. Each row represents the number of
lifted instructions that could only be successfully lifted from
the specified set of lifters. From these results, it is apparent that
BINSEC could lift the smallest number of instructions. There
is also a noticeable clustering of instructions which only BAP
and BINSEC could lift. This is due to the instruction prefix,
f3 : rep, which is used for expressing the instruction level
loop. From the Intel Developer’s Manual [2], if the rep prefix
is used with an inappropriate opcode, the prefix should be
ignored. However, PyVEX simply refuses to interpret such
instructions. That is why such a huge number of instructions
was lifted with BAP and BINSEC in comparison with PyVEX.

The “None” row of the table indicates the number of
instructions that are not successfully lifted from any one of
the binary lifters under test. Almost 16% and 33% of the
instructions on x86 and x86-64, respectively, could not be
lifted by the binary lifters. This result signifies two points:
(1) only a small subset of available instructions are used in
binary executable in practice; and (2) the current state-of-the-
art lifters are yet to be perfect.

C. Bugs Found

Can MeanDiff find realistic semantic bugs? To answer the
question, we checked the semantic equivalence on every lifted
BBIRs under test.

In total, MeanDiff found semantic bugs from 65,940 distinct
binary instructions. Since two or more instructions can cause
the same semantic bug, we manually verified all the bugs we
found, and obtained 24 unique bugs in total. More specifically,
we found 23 unique bugs on x86, and 10 unique bugs on x86-
64. Out of 10 unique x86-64 bugs, 9 bugs were overlapping
with x86 bugs. Thus, we did not count them. Table 3 shows
the list of bugs that we found with MeanDiff. The example
column shows a sample instruction that you can trigger the
bug. In the table, there are some cases that the same type of
bug occurs in different lifters. We treat them as a separate bug
since the implementations of lifters are different.

TABLE 2
THE NUMBER OF SUCCESSFULLY LIFTED BINARY INSTRUCTIONS.

Lifter(s) x86 x86-64

PyVEX & BAP & BINSEC 71,350 -
PyVEX & BAP 85,066 286,081
PyVEX & BINSEC 81,872 -
BAP & BINSEC 175,416 -
PyVEX 135,172 516,974
BAP 206,118 632,035
BINSEC 202,652 -
None 50,990 358,375

D. Case Studies

In this subsection, we examine three interesting cases of
semantic bugs found by MeanDiff.

Case Study #1 (push). Stack operations such as push
and pop are used in various execution contexts: local and
temporary variables for functions are stored on the stack;
function arguments are passed through the stack; and return
addresses are saved on the stack. Given that stack operations
are so common, the semantics of the push instruction should
be correct?

The Intel Developer’s Manual [2] describes the semantics
of push, but most of the description is written in natural
language, while only the operation segment is expressed in
pseudo code. Although the manual does its best to describe
every possible semantic, it is often not possible to understand
all possible corner cases by just looking at the pseudo code.

The binary sequence 6aff is translated into push 0xff.
Since the stack pointer never decreases by 1, the size of source
operand is smaller than the size of the operation. If one tries
to look up how the CPU deals with this situation, one may
fail to locate the pseudo-code. Instead, it is indicated in the
description written in English. The manual indicates in this
situation that the source operand must be sign-extended before
it is pushed to the stack.

Figure 3 describes the result of each target binary lifter,
which shows how each lifter handles the situation described
above. Both BAP and BINSEC produce BBIR instances with
semantics that move the 32-bit value 0xff into memory.
PyVEX, on the other hand, produces an instance, which
moves the 32-bit value 0xffffffff into memory. This is an
obvious semantic discrepancy, which symbolizes the difficulty
to implement binary-based tools that have the precise meaning.

Case Study #2 (bt). MeanDiff is even able to find bugs
in PyVEX, which has been extensively tested and applied
in the state-of-the-art research The instruction bt, which
stands for Bit Test, has two operands. It tests the bit in the
first operand, at the index specified in the second operand,
and puts the result in the CF status flag. The target binary
instruction is 0fa3d8, which is translated to bt eax, ebx.
Unfortunately, MeanDiff is not able to test all three binary
lifters as BINSEC does not understand this instruction. Thus,
it only compares the BBIR instances from BAP and PyVEX.

360

TABLE 3
BUGS FOUND

Lifter Bug Description Example Opcode

BAP Confusion of operands 0fc100 xadd

BAP Operand address changed 0fc100 xadd

BAP Not taking mod size c000ff rol

BAP Missing signed extension 6aff push

BAP Invalid CF calculation 0fc1c0 xadd

BAP Invalid OF calculation 28c0 sub

PyVEX Missing arithmetic operation 0fc1c0 xadd

PyVEX Useless memory access 0fa3c0 bt

PyVEX Invalid push/pop operation 0e push

PyVEX Not storing segment register 488c00 mov

BINSEC Confusion of operands 0f3a0f0042 palingr

BINSEC Operand address changed 0fc000 xadd

Lifter Bug Description Example Opcode

BINSEC Missing signed extension 6b08ff add

BINSEC Invalid padding 678cc0 mov

BINSEC Invalid order of calculation 0fb100 cmpxchg

BINSEC Invalid memory addr. calculation 0fa300 bt

BINSEC Not taking part of value 0fa300 bt

BINSEC Unable to recognize prefix 64668d08 lea

BINSEC Invalid pop operation 5c pop

BINSEC Invalid pushad behavior 60 pushad

BINSEC Invalid store/load AF behavior 9e sahf

BINSEC Invalid CF calculation 1cff sbb

BINSEC Invalid OF calculation 1cff sbb

BINSEC Operand address changed 0fc000 xadd

1 v1 := 0x80:32
2 ESP := ESP - 0x4:32
3 mem32 := mem32 with [ESP, el]:u32 <- v1

(a) Lifted IR from BAP [14].

1 t3 = GET:I32(esp)
2 t2 = Sub32(t3,0x00000004)

3 PUT(esp) = t2
4 STle(t2) = 0xffffff80

(b) Lifted IR from PyVEX [4].

1 @[(esp(32) - 4(32))]L4 := 255(32)
2 esp := (esp(32) - 4(32))

(c) Lifted IR from BINSEC [11].

Fig. 3. Bug case study #1: push 0xff.

1 o1 := low:5[EBX]
2 CF := low:1[EAX >> o1]
3 OF := unknown[bt]:u1
4 SF := unknown[bt]:u1

5 ZF := unknown[bt]:u1
6 AF := unknown[bt]:u1
7 PF := unknown[bt]:u1

(a) Lifted IR from BAP [14].

1 t2 = GET:I32(ebx)
2 t9 = GET:I32(esp)
3 t8 = Sub32(t9,0x00000080)
4 PUT(esp) = t8
5 t10 = GET:I32(eax)
6 STle(t8) = t10
7 t3 = And32(t2,0x0000001f)
8 t12 = Sar32(t3,0x03)
9 t11 = Add32(t8,t12)

10 t14 = And32(t3,0x00000007)
11 t13 = 32to8(t14)
12 t0 = LDle:I8(t11)

13 PUT(cc_op) = 0x00000000
14 PUT(cc_dep2) = 0x00000000
15 t17 = 8Uto32(t0)
16 t16 = Shr32(t17,t13)
17 t15 = And32(t16,
18 0x00000001)
19 PUT(cc_dep1) = t15
20 PUT(cc_ndep) = 0x00000000
21 t18 = LDle:I32(t8)
22 PUT(eax) = t18
23 t19 = Add32(t8,0x00000080)
24 PUT(esp) = t19

(b) Lifted IR from PyVEX [4].

Fig. 4. Bug case study #2: bt eax, ebx.

Figure 4 shows the lifted BBIR instances. By comparing
the difference in the output size, one may begin to realize the
difference in semantics. BAP clearly bit-shifts EAX to right by
the number specified in EBX, followed by storing the lowest bit
in CF. This is indeed the semantics defined in Intel Developer’s
Manual [2]

However, the VEX IR instance starts by decrementing the
stack pointer by 0x80 and storing the value of EAX at the
resulting address. Further, it computes the actual bit test, which
is stored in cc_dep1. Lastly it restores the stack pointer by
incrementing, but without restoring the value it previously
modified at -0x80(ESP). In other words, the CPU state
has been altered in a way not defined in the x86 instruction
definition. The discrepancy may seem obvious when directly
comparing it to another BBIR, but due to the sheer amount
of instructions in modern architectures, bugs of this nature are
difficult to detect.

Case Study #3 (xadd). The last case introduced in this
paper is the xadd; exchange and add. This case is interesting
as both BAP and BINSEC confuse the semantics regarding
the operands in a similar, but different fashion.

First, let us introduce the binary instruction: 0fc100. It is
a combination of the opcode 0fc1 and operand 00, which
represents EAX as source and [EAX] as destination operand.
The semantics of this instruction listed in the manual [2] is as
follows: exchange the value of destination and source operand,
and then load the sum of the two values into the destination
operand. Now, let us see how each binary lifter represents this
semantics in their own BBIR.

Figure 5 shows that each of the lifted BBIR instances
represents different semantics. Starting with the last, i.e. the
DBA instance in Figure 5c, it calculates the correct value
and corresponding flags, but somehow changes the destination
address before writing the result to it. The BIL instance, in
Figure 5a, correctly calculates the result, but switches the
operands such that the result is written to the source operand.

Interestingly enough, there is another bug present in the core
of calculating status flags. For example, OF is calculated based
on the memory operand, which has already been changed. The
only correct instance is from PyVEX, in Figure 5b, which
correctly writes the result to the correct operand.

The Lesson. From the above examples, we have shown that
even the heavily tested binary lifters have semantic bugs. It is
extremely difficult to consider every possible semantic details

361

1 v1 := (low:32[EAX])
2 + (mem32[pad:32[low:32[EAX]], el]:u32)
3 mem32 := mem32 with [pad:32[low:32[EAX]], el]:u32
4 <- low:32[EAX]
5 EAX := v1
6 ...
7 OF := ((high:1[v1]) =
8 (high:1[mem32[pad:32[low:32[EAX]], el]:u32]))
9 & ((high:1[v1]) ˆ (high:1[low:32[EAX]]))

10 AF := 0x10:32 = (0x10:32 \& (((low:32[EAX]) ˆ v1)
11 ˆ (mem32[pad:32[low:32[EAX]], el]:u32)))
12 ...

(a) Lifted IR from BAP [14].

1 t3 = GET:I32(eax)
2 t0 = LDle:I32(t3)
3 t2 = Add32(t0,t3)
4 STle(t3) = t2
5 PUT(cc_op) = 0x00000003

6 PUT(cc_dep1) = t0
7 PUT(cc_dep2) = t3
8 PUT(cc_ndep) =
9 0x00000000

10 PUT(eax) = t0

(b) Lifted IR from PyVEX [4].

1 res32 := (@[eax(32)] + eax(32))
2 OF := ((@[eax(32)]L4{31} = eax(32){31}) &
3 (@[eax(32)]L4{31} != res32(32){31}))
4 ...
5 eax := @[eax(32)]
6 @[eax(32)] := res32(32)

(c) Lifted IR from BINSEC [11].

Fig. 5. Bug case study #3: xadd [eax],eax.

by simply reading the manual.

VI. DISCUSSION AND LIMITATION

In this paper, we tested three of the binary lifters listed in
Table 1. Recall from §IV-B, extracting a binary lifter from
existing binary analysis tools can require significant manual
effort. We handle this issue by making MeanDiff as an open
source project. Binary analysts who have their own lifter, or
borrow a famous lifter from another project, will be able to
add their lifter to MeanDiff and test the correctness of it.

MeanDiff currently does not test instructions performing
floating point operations. As shown in Table 1, many lifters,
including BAP and BINSEC, do not support floating point
operations. As such, we currently do not take floating point
operations into account. However, it is straightforward to
modify UIR to handle floating point operations by using a
theory of floating-point numbers in SMT solving [51]. We
leave it as future work to support such functionality.

MeanDiff currently supports only x86 and x86-64. To add
support for another ISA, one needs to build a new stream
generator for the ISA by manually analyzing the syntactic
structure of every instruction in the ISA. Indeed, one of the
reasons why we make our source code public is to encourage
the community to adapt this technique to test the correctness
of various BBIRs.

Our current focus is on BBIR instances generated from
a single instruction, but we can potentially extend Mean-
Diff to handle BBIR instances from multiple instructions.
Since some lifters such as PyVEX performs intra basic-block
optimizations, we may be able to find interesting semantic

bugs by extending our scope. However, by considering BBIR
instances from multiple instructions, we may face several
challenges. First, STREAMGEN needs to consider all possible
combinations of instructions. Second, the classic symbolic
memory challenge may occur frequently (recall from §IV-D).
We believe this is a promising direction for future research.

VII. RELATED WORK

The idea of a symbolic equivalence check itself is not
new [22], [34], [41], [48], but our work is the first attempt
to applying the idea to testing the correctness of BBIRs.
Luo et al. [41] recently extended the idea of a symbolic
equivalence check to perform similarity comparison on obfus-
cated binary code. We believe that N -version IR testing can
contribute to solving the addressed challenges by providing
more accurate semantics of binary code.

Hasabnis et al. [29] attempt to test IRs generated by
compilers. The key difference between their work and ours is
that they rely on the CPU to test the correctness. They compare
the result from CPU with the result from an IR emulator. There
are several pieces of work in this line of research: [43], [44].
All the existing techniques rely on the actual CPU state and
randomly generated test cases.

One remarkable attempt, in the area of binary lifting, is
automatically generating BBIRs. Godefroid [28] et al. made
this problem into the program synthesis problem with a black-
box oracle. They divided ALU operations into 3 groups,
made templates for each group, and synthesized IRs from
those templates. The automatic BBIR generation problem was
turned into a problem in the area of machine learning by
Hasabnis [30] et al.. They used the problem of learning a
parameterized translation on trees to automatically synthesize
BBIRs. These approaches do not guarantee the semantic
correctness of the generated BBIRs. Thus, our approach is
orthogonal and complementary to their techniques.

VIII. CONCLUSION

In this paper we proposed N -version IR testing, a novel
technique to find semantic bugs in binary lifters. We systemat-
ically studied existing binary lifters to motivate our research,
and addressed several challenges in applying our technique
to binary-based IRs. We implemented the proposed technique
in MeanDiff, and evaluated the system on 3 state-of-the-art
binary lifters. We found 24 unique semantic bugs, which were
all manually confirmed. Furthermore, we have reported all of
our findings to the developers of the tested binary lifters. Our
results indicate that any binary analysis can go wrong even
with a well-founded theory when the semantics of binary-
based IRs is wrong.

ACKNOWLEDGMENTS

This work was supported by Institute for Information &
communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No.B0717-16-0109, Build-
ing a Platform for Automated Reverse Engineering and Vul-
nerability Detection with Binary Code Analysis).

362

REFERENCES

[1] “ARM architecture reference manual,” http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html.

[2] “Intel R© 64 and ia-32 architectures software developer’s manual,” https:
//software.intel.com/en-us/articles/intel-sdm.

[3] “MeanDiff,” https://github.com/SoftSec-KAIST/MeanDiff.
[4] “Pyvex,” https://github.com/angr/pyvex.
[5] “QEMU-devel archives,” http://lists.gnu.org/archive/html/qemu-devel/

2017-01/msg03062.html.
[6] “QEMU-devel archives,” http://lists.gnu.org/archive/html/qemu-devel/

2009-03/msg00154.html.
[7] “Radare2,” https://github.com/radare/radare2.
[8] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques, and Tools, 2nd ed. Addison Wesley.
[9] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing

symbolic execution with Veritesting,” in Proceedings of the International
Conference on Software Engineering, 2014, pp. 1083–1094.

[10] G. Balakrishnan and T. Reps, “WYSINWYX: What you see is not
what you execute,” ACM Transactions on Programming Languages and
Systems, vol. 32, no. 6, pp. 23:1–23:84, 2010.

[11] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent,
“The BINCOA framework for binary code analysis,” in Proceedings of
the International Conference on Computer Aided Verification, 2011, pp.
165–170.

[12] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceed-
ings of the USENIX Annual Technical Conference, 2005, pp. 41–46.

[13] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for
adaptive dynamic optimization,” in Proceedings of the International
Symposium on Code Generation and Optimization, 2003, pp. 265–275.

[14] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in Proceedings of the International Conference on
Computer Aided Verification, 2011, pp. 463–469.

[15] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2012, pp. 380–394.

[16] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2015, pp. 725–741.

[17] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-
vivo multi-path analysis of software systems,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011, pp. 265–278.

[18] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantics-aware malware detection,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2005, pp. 32–46.

[19] C. Cifuentes and S. Sendall, “Specifying the semantics of machine
instructions,” in Proceedings of the International Workshop on Program
Comprehension, 1998, pp. 126–133.

[20] C. Cifuentes and M. V. Emmerik, “UQBT: Adaptable binary translation
at low cost,” Computer, vol. 33, no. 3, pp. 60–66, 2000.

[21] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni:
Automatic reverse engineering of input formats,” in Proceedings of the
ACM Conference on Computer and Communications Security, 2008, pp.
391–402.

[22] D. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and S. Rajan,
“Embedded software verification using symbolic execution and unin-
terpreted functions,” International Journal of Parallel Programming,
vol. 34, no. 1, pp. 61–91, 2006.

[23] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proceedings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, 2008, pp. 337–340.

[24] T. Dullien and S. Porst, “REIL: A platform-independent intermediate
representation of disassembled code for static code analysis,” in Pro-
ceedings of CanSecWest, 2009.

[25] E. Fleury, O. Ly, G. Point, and A. Vincent, “Insight: An open binary
analysis framework,” in Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
2015, pp. 218–224.

[26] B. Ford and R. Cox, “Vx32: Lightweight user-level sandboxing on the
x86,” in Proceedings of the USENIX Annual Technical Conference, 2008,
pp. 293–306.

[27] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox fuzzing
for security testing,” Communications of the ACM, vol. 55, no. 3, pp.
40–44, 2012.

[28] P. Godefroid and A. Taly, “Automated synthesis of symbolic instruction
encodings from i/o samples,” in Proceedings of the ACM Conference
on Programming Language Design and Implementation, 2012, pp. 441–
452.

[29] N. Hasabnis, R. Qiao, and R. Sekar, “Checking correctness of code
generator architecture specifications,” in Proceedings of the International
Symposium on Code Generation and Optimization, 2015, pp. 167–178.

[30] N. Hasabnis and R. Sekar, “Lifting assembly to intermediate repre-
sentation: A novel approach leveraging compilers,” in Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems, 2016, pp. 311–324.

[31] C. Kern and M. R. Greenstreet, “Formal verification in hardware design:
A survey,” ACM Transactions on Design Automation of Electronic
Systems, vol. 4, no. 2, pp. 123–193, 1999.

[32] J. Kinder and H. Veith, “Jakstab: A static analysis platform for binaries,”
in Proceedings of the International Conference on Computer Aided
Verification, 2008, pp. 423–427.

[33] C. Kruegel, W. Robertson, and G. Vigna, “Detecting kernel-level rootkits
through binary analysis,” in Proceedings of the Annual Computer
Security Applications Conference, 2004, pp. 91–100.

[34] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo, “SYMDIFF:
A language-agnostic semantic diff tool for imperative programs,” in
Proceedings of the International Conference on Computer Aided Ver-
ification, 2012, pp. 712–717.

[35] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization, 2004, pp. 75–87.

[36] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “PEBIL:
Efficient static binary instrumentation for linux,” in Proceedings of the
IEEE International Symposium on Performance Analysis of Systems
Software, 2010, pp. 175–183.

[37] K. P. Lawton, “Bochs: A portable PC emulator for Unix/X,” Linux
Journal, vol. 1996, no. 29es, 1996.

[38] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled reverse engi-
neering of types in binary programs,” in Proceedings of the Network
and Distributed System Security Symposium, 2011, pp. 251–268.

[39] Z. Lin and X. Zhang, “Deriving input syntactic structure from execu-
tion,” in Proceedings of the International Symposium on Foundations of
Software Engineering, 2008, pp. 83–93.

[40] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in Proceedings of the ACM
Conference on Programming Language Design and Implementation,
2005, pp. 190–200.

[41] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection,” in Proceedings of the International
Symposium on Foundations of Software Engineering, 2014, pp. 389–
400.

[42] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[43] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Bruschi, “Testing
system virtual machines,” in Proceedings of the International Symposium
on Software Testing and Analysis, 2010, pp. 171–182.

[44] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, “Testing cpu
emulators,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2009, pp. 261–272.

[45] N. Nethercote and J. Seward, “Valgrind: A program supervision frame-
work,” in Proceedings of the Workshop on Runtime Verification, 2003.

[46] ——, “Valgrind: a framework for heavyweight dynamic binary instru-
mentation,” in Proceedings of the ACM Conference on Programming
Language Design and Implementation, 2007, pp. 89–100.

[47] R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi, “N-version
disassembly: Differential testing of x86 disassemblers,” in Proceedings
of the International Symposium on Software Testing and Analysis, 2010,
pp. 265–274.

[48] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu, “Differential
symbolic execution,” in Proceedings of the International Symposium on
Foundations of Software Engineering, 2008, pp. 226–237.

363

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://github.com/SoftSec-KAIST/MeanDiff
https://github.com/angr/pyvex
http://lists.gnu.org/archive/html/qemu-devel/2017-01/msg03062.html
http://lists.gnu.org/archive/html/qemu-devel/2017-01/msg03062.html
http://lists.gnu.org/archive/html/qemu-devel/2009-03/msg00154.html
http://lists.gnu.org/archive/html/qemu-devel/2009-03/msg00154.html
https://github.com/radare/radare2

[49] D. Quinlan, G. Barany, and T. Panas, “Shared and distributed memory
parallel security analysis of large-scale source code and binary appli-
cations,” Lawrence Livermore National Laboratory (LLNL), Livermore,
CA, Tech. Rep., 2007.

[50] A. Romano and D. R. Engler, “symMMU: Symbolically executed
runtime libraries for symbolic memory access,” in Proceedings of the
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2014, pp. 247–258.

[51] P. Rümmer and T. Wahl, “An SMT-LIB theory of binary floating-point
arithmetic,” in Informal proceedings of 8th International Workshop on
Satisfiability Modulo Theories (SMT) at FLoC, Edinburgh, Scotland,
2010.

[52] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 decompila-
tion using semantics-preserving structural analysis and iterative control-
flow structuring,” in Proceedings of the USENIX Security Symposium,
2013, pp. 353–368.

[53] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new
approach to computer security via binary analysis,” in Proceedings of
the International Conference on Information Systems Security, 2008.

[54] K. Thompson, “Reflections on trusting trust,” Communications of the
ACM, vol. 27, no. 8, pp. 761–763, Aug. 1984.

[55] Trail of Bits, “Remill,” https://github.com/trailofbits/remill.
[56] M. Van Emmerik and T. Waddington, “Using a decompiler for real-

world source recovery,” in Proceedings of the Working Conference on
Reverse Engineering, 2004, pp. 27–36.

[57] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith, “No more
gotos: Decompilation using pattern-independent control-flow structuring
and semantics-preserving transformations,” in Proceedings of the Net-
work and Distributed System Security Symposium, 2015.

[58] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2007, pp. 116–127.

[59] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and randomization
for binary executables,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2013, pp. 559–573.

[60] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
Proceedings of the USENIX Security Symposium, 2013, pp. 337–352.

364

https://github.com/trailofbits/remill

	Introduction
	Binary Analysis and IR
	Notation
	Representing the Semantics of Binary Code
	Current State-of-the-Art Binary Lifters

	N-version IR Testing
	Design
	Instruction Stream Generation
	IR Lifting and Translation
	Data Flow Analysis
	Symbolic Execution
	Triage
	Implementation

	Evaluation
	Environment Setup
	Binary Lifting
	Bugs Found
	Case Studies

	Discussion and Limitation
	Related Work
	Conclusion
	References

