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ABSTRACT

With rapidly growing fuzzing technology, there has been surging
demand for automatically synthesizing buggy programs. Previous
approaches have been focused on injecting bugs into existing pro-
grams, making them suffer from providing the ground truth as the
generated programs may contain unexpected bugs. In this paper,
we address this challenge by casting the bug synthesis problem
as a maze generation problem. Specifically, we synthesize a whole
buggy program by encoding a sequence of moves in a maze as a
chain of function calls. By design, our approach provides the ex-
act ground truth of the synthesized benchmark. Furthermore, it
allows generation of benchmarks with realistic path constraints
extracted from existing vulnerabilities. We implement our idea in a
tool, named Fuzzle, and evaluate it with five state-of-the-art fuzzers
to empirically prove its value.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Software verification and validation.
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1 INTRODUCTION

Despite rapidly growing fuzzing technology [47], there has been
limited study on automatically generating effective benchmarks
for fuzzers. Indeed, most benchmarks used in past research consist
of existing buggy programs. For example, Google’s Fuzzer Test
Suite [32] and FuzzBench [52] incorporate dozens of open-source
projects containing previously-known bugs.

However, such benchmarks suffer from several drawbacks. First,
they can hardly evolve without significant manual effort, thereby
impeding large-scale evaluation. To add a program to a benchmark,
one needs to manually analyze the program to see if there is a non-
trivial and triggerable bug. Next, as benchmarks tend to remain
intact, one can create a fuzzer that overfits an existing benchmark.
For example, one could design a fuzzer that is optimized only for
FuzzBench, so the fuzzer does not performwell in other benchmarks.
Finally, such handmade benchmarks do not provide the ground
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truth. That is, one cannot know a priori how many bugs there are
in each program nor where those bugs are, making it difficult to
evaluate the effectiveness of fuzzers.

These observations have spurred research on synthesizing fuzzer
benchmarks. LAVA [19], EvilCoder [56], Apocalypse [58], and FixRe-
verter [63] are representative tools that enable on-demand fuzzing
benchmark generation, thereby allowing a large-scale evaluation
of fuzzers. We refer to such a tool as a bug synthesizer. All the exist-
ing bug synthesizers take in a program as input, and modify the
program by injecting synthetic bugs.

However, such injection-based methods still lack in providing
precise ground truth because there is no guarantee that the orig-
inal programs are bug-free. Besides, bug injection may acciden-
tally change the semantics of the original programs, which can
introduce unintended bugs. In this regard, previous bug synthe-
sizers are insufficient for rigorously evaluating fuzzers. As noted
by Klees et al. [37], bug deduplication (or triaging) employed by
modern fuzzers is largely inaccurate. Therefore, having the precise
ground truth of the benchmark is imperative in evaluating fuzzers.

To address this challenge, we propose a novel bug synthesis
algorithm, which automatically generates a buggy C program from
scratch. Since we have full control over how a program is syn-
thesized, we know by design the precise ground truth about the
resulting programs. By ground truth, we mean the existence and
location of bug(s) in each synthesized program.

The key intuition of our approach is to cast the problem of
synthesizing bugs as a maze generation problem. Our algorithm
outputs a program that behaves similarly to an agent in a maze
puzzle, where the goal is to find the exit of the maze. The agent takes
in a sequence of actions as input, andmoves its location according to
the user input. The program terminates when the agent consumes
all the user input before reaching the exit. When the agent arrives
at the exit, the program aborts and issues a notification that the
bug is found. Therefore, as long as there is a feasible execution path
to the exit, we can assure that the program has exactly one bug.

There has been longstanding recognition that software testing
is similar to maze exploration in that they have the common goal
of finding a specific path [28, 44]. In our case, synthesizing a buggy
program is equivalent to creating a maze that has a single exit point.
Finding a bug here means discovering a path from the entry to the
exit point in the maze. There are indeed many practical algorithms
to randomly generate complex mazes [59].

The maze-based bug synthesis provides an additional benefit as
it enables an effective visualization of the generated benchmarks.
As every cell-to-cell movement in a maze directly corresponds to a
function call in a generated program, we can readily visualize the
program as well as the current progress of a fuzzer in an intuitive
manner. For example, the analyst can see which part of a maze is
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covered by a fuzzer, and know in which program point the fuzzer
is stuck.

Furthermore, to ensure that finding the bug in our synthesized
program well resembles finding real bugs, we leverage the path
constraints obtained from existing vulnerabilities. Specifically, we
use symbolic execution to extract buggy path constraints from
CVEs in the SMT-LIB format, and use these constraints to construct
program paths that lead to the bug site. In addition to the realistic
path constraints, our approach generates programs that resemble
human-written code. Specifically, it generates functions that are
chained in a recursive manner, similar to those of recursive descent
parsers found in modern compilers such as GCC [31].

In this paper, we implement these ideas in a tool, named Fuzzle,
and evaluate it with five state-of-the-art fuzzers. In summary, we
make the following contributions in this paper.
• We present a novel bug synthesis algorithm that generates a
buggy program from scratch.
• We analyze requirements for generating synthetic bugs and
show why our algorithm satisfies them.
• We design and implement a novel bug synthesizer, named
Fuzzle, and evaluate it with five state-of-the-art fuzzers.
• We publicize our tool and dataset in support of open science:
https://github.com/SoftSec-KAIST/Fuzzle

2 RESEARCH GOALS

Past research has identified several design goals for bug synthe-
sizers [19, 36, 56, 58], but we found those goals are insufficient to
produce effective benchmarks because they are mainly focused on
the characteristics of the synthesized bugs. For example, previous
synthesizers do not provide precise ground truth for their output as
they have to modify existing programs. Furthermore, the generated
benchmarks do not provide any visual aid, making it difficult for a
comprehensive analysis of the progress of a fuzzing campaign.

Thus, we introduce two design goals (G7 and G8) that address the
testing aspect of generated benchmarks in addition to six existing
goals we identified from previous papers [19, 36, 56, 58].
(G1) Unbiased. Our tool should generate unbiased bugs in that

they do not favor a specific bug detection tool. The synthesized
bugs should be created in a way that is independent of the
evaluated techniques for a fair evaluation.

(G2) Deep. Our tool should produce deep bugs, which can only be
reached by penetrating a large number of branches.

(G3) Rare. Our tool should create rare bugs, which can be triggered
by only a small fraction of possible inputs.

(G4) Uncorrelated. Our tool should generate uncorrelated bugs
such that the injected bugs behave independently of each other.
That is, finding one of the bugs should not change the detection
probabilities of other injected bugs in the program.

(G5) Reproducible. Our tool should synthesize reproducible bugs.
That is, there should exist a concrete input to discover the
synthesized bugs.

(G6) Realistic. Our tool should produce a bug that can be trig-
gered by exercising a realistic path. Since it is controversial as
to which bug is realistic, we say a bug is realistic if it can be
triggered by exercising a buggy path that resembles the ones
of real-world vulnerabilities, e.g., CVEs.

Table 1: Comparison of existing bug synthesizers.
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G1 G2 G3 G4 G5 G6 G7 G8

LAVA [19] ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗

EvilCoder [56] ✓ ✓ ✓ Ltd.† ✗ ✓ ✗ ✗

Apocalypse [58] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

Bug-Injector [36] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

FixReverter [63] ✓ ✓ ✓ Ltd.† Ltd.† ✓ ✗ ✗

Fuzzle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

† Limited support.

(G7) Providing Ground Truth. Our tool should provide ground
truth, such as the number of bugs and their locations in the
synthesized programs, to enable precise fuzzer evaluation.1

(G8) Visualizable Progress. Our tool should provide visual feed-
back to fuzzers so that an analyst can intuitively figure out the
current progress of a fuzzing campaign.

Table 1 compares Fuzzle against existing bug synthesizers in
terms of the eight goals we seek to achieve. LAVA [19] generates
bugs that are neither unbiased (G1) nor realistic (G6) due to the
nature of the magic value checks it uses. EvilCoder [56] does not
always generate reproducible bugs (G5). Apocalypse [58] does not
produce realistic bugs (G6) as it injects bugs that are triggered when
arbitrarily generated conditions are met. Bug-Injector [36] accom-
plishes the existing goals (G1–G6), but not the newly proposed
goals (G7 and G8). FixReverter [63], the most recent work, injects
realistic bugs but some of the injected bugs are not triggerable (G5)
and some are triggerable only in combination with other bugs (G4).
On the other hand, Fuzzle achieves all the aforementioned goals.

3 OVERVIEW

Fuzzle is inspired by an observation that finding a software bug
is analogous to solving a maze—both involve exercising a specific
path. Therefore, the problem of synthesizing a buggy program can
be cast as a problem of generating a random maze.

The key intuition of our approach is to encode a path in a maze
into a chain of function calls in a program. Thus, every synthesized
function corresponds to a cell in the maze, and the program runs by
hopping around the maze. The program raises a signal, indicating a
bug, when the execution reaches a specific target cell, i.e., a function.
Thus, finding a buggy path to reach the buggy function is equivalent
to discovering a path in the maze from its entry to the target cell.
For simplicity, we assume that every maze we generate has a single
entrance and exit, and each exit cell is our target, although Fuzzle
provides an option to select an arbitrary target cell.
1The term “ground truth” used by Kashyap et al. [36] should not be confused with
our definition of (G7). Their ground truth property is equivalent to our reproducible
property (G5).
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Algorithm 1: Fuzzle overview.
1 function Fuzzle(𝐶algo ,𝐶size ,𝐶seed ,𝐶cycle ,𝐶smt)
2 maze← MazeGen(𝐶algo ,𝐶size ,𝐶seed)

3 𝑔← GraphGen(𝐶cycle , maze)
4 𝑡 ← TemplateGen(𝑔)

5 prog← ProgRender(𝐶smt , 𝑡)
6 return prog

At a high level, Fuzzle takes in five user-configurable parameters
(𝐶algo, 𝐶size, 𝐶seed, 𝐶cycle, and 𝐶smt) as input, and returns a synthe-
sized C program as output. Each configuration parameter helps
customize the output program, e.g., varying the shape of the maze,
providing guidance in generating path conditions, and so forth as
we will discuss in this section.

Algorithm 1 describes the overall workflow of Fuzzle, which
operates in four major steps: (1) maze generation, (2) graph gener-
ation, (3) template generation, and (4) program rendering. Fuzzle
first generates a random maze (§3.1), transforms the maze into a
graph (§3.2), creates a code template (§3.3), and fills in the holes in
the template to produce a C program (§3.4).

3.1 Maze Generation (MazeGen)

In this step, MazeGen automatically generates a random 2D maze
using a maze generation algorithm 𝐶algo specified by the user. The
algorithm outputs a random maze with a single entry and exit by
taking the following configuration parameters as input: (1) 𝐶size
decides the size of the maze, and (2) 𝐶seed specifies the seed used
by the pseudorandom number generator in 𝐶algo.

For example, Figure 1a illustrates a randomly generated 5x5
maze, where each cell is assigned with a unique identifier starting
from 0. In our current implementation, each cell has four edges,
meaning that there is a maximum of four ways to enter or exit a
cell. This makes visualizing our maze straightforward. By default,
MazeGen sets the exit node, i.e., the cell 24, as our target, although
any other cells can be a target, too. It also places the entry and exit
node at two opposite corners of the maze. Note there are arbitrarily
many walks from the entry to the exit. Hence, there are also many
execution paths to reach the bug in the synthesized program.

Fuzzle represents a maze using a two-dimensional array (denoted
as maze) containing information about every edge (i.e., a passage
between two cells) in the maze. Specifically, each row of maze cor-
responds to a cell ID, and each column represents one of the four
cardinal points (NSEW). Let us use open and close to mean an
open passage and a closed wall, respectively. We can then repre-
sent the edge from the cell 0 to cell 5 as maze[0] [𝑆] = open. For
cell 12 in Figure 1a, maze[12] [𝑁 ] = close, maze[12] [𝑆] = open,
maze[12] [𝐸] = open, and maze[12] [𝑊 ] = close. This array, i.e.,
maze, is used in the next step to construct a graph. We detail the
implementation of MazeGen in §4.1.

3.2 Graph Generation (GraphGen)

Given the maze array (maze) obtained from the previous step,
GraphGen now converts the array into a directed graph 𝑔 where
each node corresponds to a cell in the maze, and each edge cor-
responds to an open passage between two cells in the maze. This
step operates with the user configuration𝐶cycle, which controls the
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(a) Random 5x5 maze.
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(b) Generated graph.

1 void func_bug(char *input, ...) { abort(); }
2 void func_0(char *input, ...){
3 // computation for setting a variable used in conditionals
4 if ( ) func_1(input, ...);
5 else if ( ) func_5(input, ...);
6 else fatal_error("This should never happen");
7 }
8
9 /* func_1, func_2, ..., func_9 are omitted */
10
11 void func_10(char *input, ...){
12 // computation for setting a variable used in conditionals
13 if ( ) func_15(input, ...);
14 else fatal_error("This should never happen");
15 }
16
17 /* func_11, func_12, ..., func_23 are omitted */
18
19 void func_24(char *input, ...){
20 // computation for setting a variable used in conditionals
21 if ( ) func_bug(input, ...);
22 else if ( ) func_19(input, ...);
23 else if ( ) func_23(input, ...);
24 else fatal_error("This should never happen");
25 }
26
27 /* main is omitted */

(c) Generated program template.

Figure 1: Our example maze.

number of cycles in the resulting graph. The presence of cycles, i.e.,
loops in the synthesized program, will dramatically increase the
number of paths to explore, thereby making some fuzzers struggle
in finding buggy paths. We further discuss this issue in §4.2.

GraphGen first transforms every row in maze into a node in 𝑔.
It then creates an edge in 𝑔 for every open passage in maze. For
example, let 𝑛0 and 𝑛1 be nodes in 𝑔 representing the cell 0 and
cell 1 of the maze, respectively. Since we know there is an open
passage between the two cells, i.e., maze[0] [𝐸] = open, we create
an edge from 𝑛0 to 𝑛1 in 𝑔. Similarly, we create an edge from 𝑛1
to 𝑛0 because maze[1] [𝑊 ] = open. Finally, GraphGen removes
cycles based on𝐶cycle, which specifies the proportion of remaining
cycles. In the case of 𝐶cycle = 100%, we do not remove any cycle.
When 𝐶cycle = 0%, we remove all the back edges from the graph.
Figure 1b presents the resulting graph (in part) when𝐶cycle = 100%.

3.3 Template Generation (TemplateGen)

Next, TemplateGen takes in the directed graph 𝑔 as input, and
returns a template 𝑡 as output, which is a C-like code representation
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1 void func_24(char *input, int idx){
2 int nBytes = 3;
3 ... // check that input size is large enough
4 int flag = 0;
5 if(!((uint8_t) 95 == input[idx])){
6 if ((uint8_t) 0 <= input[idx + 1]){
7 ...
8 /* complex logic is placed here */
9 ...
10 flag = 1;
11 }
12 }
13 if (flag == 1) func_bug(input, idx + nBytes);
14 else if (input[idx + 2] < 0) func_19(input, idx + nBytes);
15 else if (input[idx + 2] >= 0) func_23(input, idx + nBytes);
16 else fatal_error("This should never happen");
17 }

𝐶smt

Figure 2: A function in C program synthesized from the 5x5
maze shown in Figure 1 using CVE-2016-6131 [54].

of the maze. Essentially, 𝑡 is an incomplete C program with holes,
i.e., placeholders, which will be later completed by ProgRender.
Figure 1c shows 𝑡 generated from our example maze where every
placeholder is highlighted with a green box.

The generated template 𝑡 encodes every path in 𝑔 as a chain of
function calls. Specifically, TemplateGen converts every node in 𝑔
to a function, and every edge to a call between two functions. Each
function in 𝑡 has a name starting with the prefix “func_”, followed
by a cell ID. For example, func_0 corresponds to the cell 0 (𝑛0 in
𝑔). There are two function calls in func_0 to func_1 and func_5
because 𝑛0 has two outgoing edges to 𝑛1 and 𝑛5. There is only a
single function call in func_10 as it represents a dead-end where
the only way out is to go to 𝑛15, i.e., func_15. Note that func_15
also contains a function call to func_10. There is a main function
that simply calls func_0, but we do not show it for brevity.

Every function call is guarded with a conditional expression (e.g.,
Line 4, 5, 13, and 21–23 of Figure 1c), which will be populated by
ProgRender in the next step. The template also preserves space in
Line 3, 12, and 20 for putting more complex logic into the condition-
als. As we will discuss in §3.4, ProgRender makes sure that every
conditional expression is satisfiable so that the else branches in
Line 6, 14, and 24 will never be executed. This way, we make every
program execution flows only through the open passages, but not
through the walls.

Our design allows the functions to be called recursively to form
loops. Such a recursive structure is commonly found in recursive
descent parsers, such as GCC [29–31]. Benchmarks generated by
Fuzzle are indeed quite similar to the C/C++ parsers of GCC. De-
pending on the value of 𝐶cycle, however, the resulting program
may not have a loop. For example, when 𝐶cycle = 0%, Line 13 and
14 of Figure 1c will be removed, in which case func_10 simply
terminates program execution because 𝑛10 is a dead-end.

3.4 Program Rendering (ProgRender)

The final step is to set up a proper path constraint for every
passage in the maze by substituting all the placeholders in 𝑡 with
carefully crafted C expressions. Figure 2 shows a part of the final C
program synthesized with 𝐶smt obtained from CVE-2016-6131 [54].
At a high level, the program moves around the maze by making
function calls until it consumes all the user input (like a recursive
descent parser)—there is an input size check in every function, e.g.,

start
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(a) Backtracking algorithm

start
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(b) Prim’s algorithm

Figure 3: Comparison between two mazes generated by two

different algorithms.

Line 3 in Figure 2. Each function consumes a different number of
input bytes based on the inserted conditional expressions. When
the program reaches the buggy node, i.e., func_bug, the program
raises a SIGABRT to let a fuzzer recognize the bug.

ProgRender fills in the placeholders first along a buggy path,
and then along the rest of the paths. First, it disregards any cycles
in 𝑔, and finds the shortest path from the entry node to the target
node, which corresponds to a buggy path in the final program. It
then fills in the placeholders along the path with realistic path con-
straints 𝐶smt obtained from a real program execution. For example,
calling func_bug from func_24 is part of the buggy path, whereas
calling one of the other two functions, func_19 and func_23, is
not. Therefore, Line 13 contains a guard for the buggy path, and the
flag variable in the guard becomes 1 if and only if all the conditions
(Line 5–9) extracted from𝐶smt are satisfied. The key challenge here
is to form a condition by extracting expressions from 𝐶smt that
use the same input byte(s). We discuss further in §4.3.1 how Fuzzle
constructs a guard for each function call by subdividing expressions
in 𝐶smt.

Next, it handles the rest of the placeholders (Line 14–15) by syn-
thesizing path constraints while ensuring the generated program
achieves all the aforementioned goals in §2. By default, ProgRen-
der employs equally-divided input range checks to ensure that the
generated conditions are always satisfiable—thus, Line 16 will never
be executed. The use of range checks ensures that the remaining
input space is equally partitioned such that every possible function
call that does not lead towards the buggy site is equally probable
from a given function. Although such input range checks are simple,
they allow Fuzzle to generate benchmarks that are well-suited for
evaluating the path exploration ability of fuzzers. ProgRender also
supports several other rendering strategies as discussed in §4.3.2.

4 DESIGN

This section presents several design choices we made to imple-
ment Fuzzle. We also review how Fuzzle achieves all the design
requirements, and show its implementation details.
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4.1 Maze Generation Algorithms

As the shape of a generated maze determines the flow of the pro-
gram paths, the choice of a maze generation algorithm can signifi-
cantly affect the performance of fuzzers. Fuzzle allows the analyst
to choose a maze generation algorithm via 𝐶algo. Currently, it im-
plements five different maze generation algorithms including back-
tracking, Kruskal’s, Prim’s, Sidewinder, and Wilson’s algorithm.
All these algorithms ensure that there is no unreachable area in
the maze [59]. Four of them (backtracking, Kruskal’s, Prim’s, and
Wilson’s algorithms) are graph-theoretical methods where maze
generation is considered as generating a random spanning tree [18].
In contrast, Sidewinder does not require the entire maze to be stored
in memory at once, as it generates one row at a time. Starting with
an open passage at the top, it makes subsequent rows by removing
randomly chosen walls.

We can easily visualize the differences between the algorithms
by comparing the resulting mazes. For example, Figure 3 depicts
two different mazes generated by (a) the backtracking algorithm
and (b) Prim’s algorithm. The maze generated with Prim’s algo-
rithm has many short passages that lead to dead-ends, which are
labelled with × marks, whereas the maze from the backtracking
algorithm has long-winding passages with only a few branching
points. Our empirical study shows that such differences indeed af-
fect the performance of tools on the generated benchmarks (§5.4.1).

4.2 Restricting Loop Conditions

Any walks in 𝑔 form a loop in the generated program when their
starting node and ending node are the same. For example, a walk
𝑛0 → 𝑛1 → 𝑛0 in Figure 1b constitutes a loop. Such a loop can
make Fuzzle-generated programs run indefinitely. Therefore, it
is necessary to control the termination conditions of those loops.
One potential solution is to employ a global induction variable to
impose a terminating condition for each loop. Currently, we take
the following two approaches to handle this issue. We leave it as
future work to fine-control loop conditions, though.

First, we allow the user to control the number of cycles in 𝑔 with
𝐶cycle. Decreasing the value of 𝐶cycle reduces the number of walks
that form a loop in the generated program. A large value of 𝐶cycle,
on the other hand, leads to an increased number of paths to explore,
thereby generating a benchmark program with a hard-to-find bug.
We empirically evaluate the impact of 𝐶cycle in §5.4.3.

Furthermore, we limit the amount of input the program can
take in to prevent an infinite loop. We note that modern fuzzers,
including AFL, are unlikely to be stuck in the loops of the program
as they often prefer taking infrequently visited nodes. Nevertheless,
by making the program consume only a limited amount of input,
we ensure that the program always terminates. Specifically, Fuzzle
computes the maximum input size of a program to be the total sum
of the number of bytes required by each function.

4.3 Rendering Path Conditions

Recall from §3.4, Fuzzle produces a final program by replacing the
placeholders in the templatewith generated conditional expressions.
Fuzzle first renders conditions along the shortest solution path from
an entry to the buggy function, i.e., buggy path conditions, (§4.3.1).

It then renders the conditions for the rest of the paths, i.e., non-
buggy path conditions, (§4.3.2).

4.3.1 Buggy Path Conditions. Fuzzle renders the buggy path con-
ditions using realistic path constraints 𝐶smt obtained from a real
program execution. In our current implementation, we obtain 𝐶smt
by running KLEE [10] with a concrete input that triggers a previous
CVE. Fuzzle expects that 𝐶smt is in the standard SMT-LIB format.

We first convert the given path formula 𝐶smt into a set of C
expressions. We then use those expressions to construct a guard for
each function call in the buggy path. We use nested if-statements if
the guard has multiple conditions. As the functions consume the in-
put sequentially, the key challenge here is to ensure the expressions
that share any variables are used in the same function.

To achieve this goal, we subdivide 𝐶smt into independent sub-
formulas that do not share any variables, as in the independent
constraint optimization used in symbolic execution [10, 11]. We
then insert each subformula into one of the functions along the
buggy path. When there are a fewer number of independent sub-
formulas than the total number of functions in the buggy path,
we use our basic range checks for the remaining functions (§4.3.2).
This allows the generated program to better reflect the difficulty of
finding the original bug used in obtaining 𝐶smt.

4.3.2 Non-Buggy Path Conditions. Fuzzle employs three different
ways to fill in the rest of the placeholders: (1) range-based, (2)
equality-based, and (3) real-constraints-based approaches.

First, by default, Fuzzle uses equally-divided range checks. For
example, func_24 in Figure 2 has two function calls (in Line 14 and
15) that are not relevant to the buggy path. They both consume the
same input byte at the same offset (idx + 2), and equally divide the
input space into two. Although simple, this approach is effective
in evaluating state-of-the-art fuzzers as our empirical study shows
in §5.4. This is because the maze structure with its recursive call
chains indeed constitutes complex paths to navigate.

Second, Fuzzle can use equality checks to construct path con-
ditions. Since penetrating an equality condition has been one of
the hurdles in grey-box fuzzing until recently [14, 38], we can fill
in each placeholder by creating an equality check with a random
integer. Our study shows that this strategy effectively varies the
bug finding difficulty for several fuzzers (§5.5.1).

Finally, Fuzzle can leverage the realistic constraints 𝐶smt to fill
in the rest of the conditionals, too. It is indeed trivial to negate a
random part of𝐶smt to construct additional conditional expressions.
For example, we canmake a new conditional expression by negating
the condition in Line 5 of Figure 2 while using the same nested
conditionals as long as the resulting path constraints are satisfiable.
This strategy hinders fuzzers from distinguishing buggy paths from
non-buggy paths, consequently preventing them from overfitting
to our benchmark. We further evaluate the impact of using this
strategy in §5.5.2.

4.4 Visualization

One of the distinguishing features of Fuzzle is that the coverage
achievement of any synthesized program is easily visualized in an
intuitive maze figure. Since Fuzzle represents a maze using a 2D
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array (§3.1), we can easily transform the array into a black-and-
white image, where black pixels indicate walls. Using this image,
Fuzzle visualizes code coverage progress during a fuzzing campaign.
Whenever Fuzzle obtains code coverage reports from a fuzzer, it
fills in each cell of the maze figure with appropriate colors. In our
current implementation, we use green to indicate the cells that
have been visited at least once, and red for the cells that have never
been visited. This way, the analysts can intuitively understand the
current progress of fuzzers (see §5.8).

4.5 Review of the Design Requirements

Does Fuzzle achieve all the design requirements we defined in §2?
We answer this question by recalling the design of Fuzzle.

Fuzzle generates an unbiased fuzzing benchmark (G1) in that
synthesized bugs do not favor a specific fuzzer. Our empirical study
in §5.4.6 confirms this requirement by showing that although there
are better performing fuzzers overall, none of the fuzzers shows
the best performance in all programs.

Fuzzle also produces deep (G2) and rare (G3) bugs because they
can only be triggered by exercising specific paths that are guarded
by a large number of conditionals obtained from real path con-
straints 𝐶smt. Furthermore, one can easily adjust the deepness and
the rarity of bugs by varying 𝐶smt, 𝐶size, and 𝐶cycle.

Fuzzle synthesizes uncorrelated bugs (G4) because there can
only be a single bug in each program by its design. Fuzzle generates
reproducible bugs (G5) as it always checks the satisfiability of
synthesized path conditions before rendering a program. Fuzzle
constructs a buggy path by embedding realistic path constraints
𝐶smt obtained from a real program execution (G6).

Fuzzle provides the precise ground truth of the generated bench-
marks (G7) as it knows exactly where in the program the injected
bug is located and how one should exercise the buggy execution
path to trigger it.

Lastly, Fuzzle produces intuitive visual feedback to the user (G8)
by showing the current progress of a fuzzing campaign or in a
post-analysis to learn why each fuzzer struggles to traverse buggy
paths (see §4.4). Although a similar feature can be implemented by
visualizing Control Flow Graphs, they are often too large to provide
concise and intuitive visual feedback to the users. Fuzzle is indeed
the first bug synthesizer providing intuitive visual feedback.

4.6 Implementation

We implemented Fuzzle with 1.5K SLoC of Python and 700 SLoC
of Bash. We make our implementation of Fuzzle and the generated
benchmark publicly available on GitHub. Fuzzle produces random
mazes using the mazelib Python library v0.9.12 [60], which imple-
ments the well-known maze generation algorithms we described in
§4.1. To parse SMT formulas (§4.3.1), Fuzzle uses pySMT v0.9.0 [22],
a Python library for manipulating and solving SMT formulas. For vi-
sualization explained in §4.4, Fuzzle uses the matplotlib v3.4.2 [27]
to create visual representations of the generated programs and code
coverage information.

5 EVALUATION

The goal of this section is to answer the following research questions
about Fuzzle and benchmarks generated by Fuzzle.

RQ1. Is Fuzzle efficient in terms of synthesizing buggy programs?
RQ2. How do configuration parameters of Fuzzle affect the quality

of synthesized bugs and the performance of fuzzers?
RQ3. How do rendering strategies affect the quality of synthesized

bugs and the performance of fuzzers?
RQ4. Does Fuzzle generate benchmarks of customizable difficulty?
RQ5. Are fuzzers’ performances on Fuzzle-generated benchmarks

representative of performances on real-world programs?
RQ6. Does visualization help understand the performance of fuzzers?

5.1 Experimental Setup

5.1.1 Tools Used. We selected five bug finding tools including AFL
(v2.57b) [62], AFLGo (6e87b69a) [3], AFL++ (v3.13c) [21], Eclipser
(dc7deb96) [14], and Fuzzolic (6aa53031) [5, 6]. These tools cover a
wide variety of bug finding techniques including grey-box fuzzing,
directed fuzzing, symbolic execution, and hybrid fuzzing. Because
each tool supports different fuzzing targets, we divided the tools
into two groups: (1) those that operate only on source code, and (2)
those that operate on binaries. For the first group, which consists
of AFLGo only, we use the C source code of the benchmark. For the
second group, we use binaries obtained by compiling the benchmark
programs with GCC v9.3.0.

5.1.2 Environments. All the experiments were conducted on 2
servers of the same specification: 88 Intel Xeon E5-2699 v4 CPU
cores with 2.20 GHz and 128 GB of memory. We ran each experi-
ment in an isolated Docker container, and assigned one CPU core
and 8GB of memory for each experiment run. Every fuzzer was run
for 24 hours for each fuzzing campaign, and every experiment was
repeated five times.

5.1.3 Tool Configuration. As AFL, AFLGo, AFL++, Eclipser, and
Fuzzolic require an initial seed to operate, we used a dummy initial
seed that contains a single character ‘A’. Note, for AFLGo, the value
used for time-to-exploitation was 18 hours, which corresponds to
3/4 of the total run time as recommended by the authors.

5.2 Benchmark

With Fuzzle, we created a fuzzing benchmark that consists of 90
distinct programs synthesized from scratch. Recall that Fuzzle takes
in five user parameters as input. Since most parameters are continu-
ous, we consider only a subset of possible values for each parameter
as summarized below.
• 𝐶algo: five different algorithms described in §4.1.
• 𝐶size: 20x20, 30x30, 40x40, and 50x50.
• 𝐶seed: 1, 3, 5, 7, 9.
• 𝐶cycle: 0%, 25%, 50%, 75%, and 100%.
• 𝐶smt: 6 path formulas obtained from 6 different CVEs or ∅.

For 𝐶smt, we used 6 CVEs from GNU Binutils v2.26, which have
been widely used for evaluating fuzzers [3, 4, 13]. For each CVE, we
ran KLEE [10] with an input known to trigger the CVE to obtain
the path formulas in the SMT-LIB format. We denote by∅ an empty
formula, meaning that one can opt-out 𝐶smt.

Even with the subset of the parameter values, we still have too
many parameter combinations to consider (3,500 = 5 × 4 × 5 ×
5 × 7). Therefore, we further reduced the number as follows. We
first set up a default configuration with the following parameter
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values: 𝐶algo = Wilson’s, 𝐶size = 30x30, 𝐶cycle = 25%, and 𝐶smt = ∅.
Using this default configuration, we then exhaustively changed each
parameter value one at a time while fixing the other parameters as
the same as the default configuration. This gives us 18 (= 5+4+5+7−
3) unique combinations of parameter values (-3 for deduplication).
For each parameter combination, we synthesized five programs at
random by using five different values for 𝐶seed, resulting in a total
of 90 distinct programs.

Our benchmark has a total of 90,540 functions, which constitutes
1,304,952 SLoC of C. On average, Fuzzle generated 1,006 functions
and 14,499 SLoC per program. Our benchmark has 6× larger SLoC
than the LAVA-M benchmark [19], which is built upon GNU Core-
utils. We note that Fuzzle can always synthesize larger programs
by increasing 𝐶size without having to rely on existing programs.

5.3 RQ1: Efficiency of Fuzzle

To evaluate the practicality of Fuzzle, we measured the efficiency
of Fuzzle in terms of the time required to generate the benchmark
introduced in §5.2. In total, Fuzzle took 923.31 seconds, or 15.39
minutes, to generate all 90 programs in the benchmark on the
same server machine we described in §5.1.2 using a single core.
This means that, on average, each program was synthesized in
about 10 seconds. Moreover, as Fuzzle is not dependent on existing
programs, one can easily expand our benchmark to create a larger
one. Thus, we conclude that Fuzzle is highly efficient in synthesizing
benchmark programs.

5.4 RQ2: Impact of Configuration Parameters

How does each parameter affect the performance of each fuzzer? As
our benchmark contains programs synthesized with exhaustively
varying only one parameter at a time (§5.2), we can answer this
RQ by running the tools on each of the synthesized programs. We
ran each tool for 24 hours with five trials on each program, which
sums up to 54,000 CPU hours. Table 2 summarizes (1) the branch
coverage (measured with Gcov), (2) the percentage of runs that
successfully found the bug, and (3) the time taken to find the bug.
The reported numbers are the arithmetic mean of 25 experimental
runs (5 times per PRNG seed 𝐶seed).

5.4.1 Impact of 𝐶algo. The 𝐶algo column of Table 2 shows the im-
pact of varying 𝐶algo, which corresponds to five different maze
generation algorithms described in §4.1. First, most tools were able
to find the bugs more consistently and quicker on the programs
generated with the backtracking algorithm than those generated
with Kruskal’s and Prim’s algorithms. This is because Kruskal’s and
Prim’s algorithms tend to produce more branches to explore com-
pared to the backtracking algorithm. Next, most tools achieved the
highest code coverage in the programs generated with Sidewinder
algorithm, which most likely owes to the fact that mazes generated
with Sidewinder have the entire top row as a long open passage.
Therefore, these varying results across algorithms demonstrate that
changing 𝐶algo has a significant impact on the performance of the
tools in terms of both code coverage and bug finding capability.

5.4.2 Impact of 𝐶size. The 𝐶size column of Table 2 presents the im-
pact of𝐶size, which controls the size of mazes we generate. Overall,
all the tools covered less code and took longer to find the bugs
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Figure 4: Coverage over time with varying𝐶size for each tool.

as the program size (𝐶size) became larger. We also measured the
coverage achievement over time in Figure 4, and observed the same
trend. With Mann-Whitney U-Test [1], we verified the significance
of 𝐶size: 𝑝-value was less than 0.001 for all cases.

We note that the performance drop observed for AFL and AFLGo
is much larger than that of the other fuzzers. With 20x20 mazes,
AFL and AFLGo found bugs in all but one run. As the size increased
to 40x40, however, both AFL and AFLGo did not find any bug.
This is not surprising because both tools have less effective seed
scheduling and mutation strategies compared to the others. These
results align well with other comparative studies performed on
other real-world benchmarks [21, 46, 52], which indeed signifies
the value of Fuzzle as a benchmark generation tool. We further
discuss the real-world representativeness of Fuzzle in §5.7.

5.4.3 Impact of 𝐶cycle. The 𝐶cycle column of Table 2 presents the
impact of 𝐶cycle, which controls the proportion of cycles to be re-
movedwhen synthesizing benchmarks. Overall, most tools achieved
less coverage and took more time to find the bugs as the number
of cycles increased. However, its impact was less than that of 𝐶size
because the coverage-guidance employed by most of the tools helps
them explore less-exercised paths first.

AFL++, Eclipser, and Fuzzolic performed well across all 𝐶cycle
values, coveringmore than 75% of the branches and finding the bugs
in every experimental run. This is intuitive as their coverage-driven
feedback mechanism should guide them to less-explored branches
(and thus, call edges). On the other hand, AFL and AFLGo became
significantly less effective as the number of cycles increased. This
is for the same reasons we discussed in §5.4.2.

5.4.4 Impact of 𝐶smt. The 𝐶smt column of Table 2 shows the im-
pact of using different path formulas obtained from different CVEs.
Unlike other parameters, we observed significant performance dif-
ferences with varying 𝐶smt for every fuzzer. All fuzzers found the
bugs, to some degree, in the programs generated with𝐶smt obtained
from CVE-2016-4487, CVE-2016-4489, and CVE-2016-4492, whereas
only Fuzzolic and AFL++ were able to find the bugs in the programs
generated using CVE-2016-4491. Such disparity in performance
arises due to the differences in the number and the types of con-
straints extracted from each CVE. CVE-2016-4491, for example, is a
stack overflow bug due to infinite recursion. Therefore, the path
formula we obtained from the CVE, i.e., 𝐶smt, contains 3× more
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Table 2: Performance of different tools on programs of varying parameters.
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AFL 41.0 64.3 65.6 76.4 57.7 87.8 57.7 36.2 22.3 68.2 57.7 49.5 43.5 40.7 37.8 22.7 25.3 43.0 24.6 21.6 57.7

AFLGo 42.6 61.9 55.4 70.1 52.2 88.6 52.2 34.3 21.4 59.0 52.2 46.6 41.5 41.9 39.9 28.2 32.8 46.1 36.2 24.1 52.2

AFL++ 89.0 87.8 87.5 88.1 87.7 88.5 87.7 86.5 83.8 88.5 87.7 87.1 86.9 86.6 75.8 52.0 29.0 85.7 76.1 57.7 87.7

Eclipser 88.2 86.7 86.5 87.5 82.2 88.2 82.2 79.7 64.9 80.3 82.2 85.7 86.5 86.4 74.2 40.5 25.4 78.4 61.1 48.2 82.2

Fuzzolic 75.9 87.7 87.4 88.5 86.6 88.4 86.6 85.0 82.3 86.7 86.6 87.1 84.3 75.6 79.8 65.1 55.4 81.1 77.0 54.7 86.6

B
u
g
s

(%
)

AFL 100 4 0 12 64 96 64 0 0 92 64 24 8 8 12 4 0 12 0 0 64

AFLGo 100 0 0 16 32 96 32 0 0 76 32 28 20 16 8 8 0 16 0 0 32

AFL++ 100 100 100 100 100 100 100 100 100 100 100 100 100 100 84 48 4 100 80 68 100

Eclipser 100 100 100 100 100 100 100 88 68 100 100 100 100 100 92 44 0 100 80 52 100

Fuzzolic 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 80 48 100 100 76 100

T
T
E

(h
)

AFL 5.17 23.05 - 21.52 18.20 10.51 18.20 - - 15.28 18.20 21.07 20.23 11.32 21.47 20.71 - 21.42 - - 18.20

AFLGo 3.99 - - 17.35 20.21 9.25 20.21 - - 17.05 20.21 20.64 18.69 18.79 19.72 20.35 - 21.72 - - 20.21
AFL++ 0.15 0.77 0.99 0.97 0.57 0.33 0.57 2.47 4.39 0.57 0.51 0.56 0.48 0.57 2.43 7.86 18.73 1.19 6.26 11.24 0.51

Eclipser 0.15 2.48 3.56 3.10 1.50 0.82 1.50 8.47 12.31 2.58 1.50 1.43 1.41 1.25 6.74 11.78 - 5.46 10.01 12.45 1.50

Fuzzolic 0.24 1.34 1.84 1.58 1.10 0.51 1.10 4.36 5.28 0.97 1.10 1.07 1.12 1.76 1.59 2.59 7.73 1.41 2.41 5.32 1.10

The best results in each column are marked with grey background. The best results in each row are marked with bold. The parameter values of the default configuration we used (§5.2) are marked with ∗.

clauses compared to the others, making it difficult for fuzzers to
penetrate all the constraints.

5.4.5 Impact of 𝐶seed. Recall that our benchmark includes five
randomly generated programs for each distinct parameter combina-
tion. To understand the impact of 𝐶seed, we measured the standard
deviations of branch coverage achievements and success rates of
finding bugs for each of the 90 programs. As a result, we found that
varying 𝐶seed does not affect the success rate of finding bugs: the
standard deviations were less than 0.01 for all the fuzzers. On the
other hand, 𝐶seed had a relatively greater impact on the coverage:
the standard deviations were around 9.6%. This is because, even
with the same parameters, one can obtain significantly different
shapes of mazes depending on the PRNG seed.

5.4.6 Is our benchmark unbiased? We note that the results from
Table 2 show that the bugs synthesized by Fuzzle are unbiased (§2).
We found that there is no single fuzzer that shows the highest per-
formance across all the programs. For example, AFL++ and Eclipser
were the fastest in finding bugs from the programs generated with
the backtracking algorithm, whereas Fuzzolic was the fastest with
different 𝐶smt. Thus, we conclude that a benchmark generated by
Fuzzle is unbiased as long as it uses different combinations of the
configuration parameters to generate the benchmark.

5.5 RQ3: Impact of Rendering Strategies

Recall from §4.3.2 that Fuzzle employs three different strategies to
render the non-buggy path conditions. To understand the impact
of using those strategies, we generated more benchmark programs
with the two non-default strategies: (1) equality-based strategy
(§5.5.1), and (2) real-constraints-based strategy (§5.5.2). We then
ran all the fuzzers on them, and measured their performance.

5.5.1 Impact of Equality Checks. Wefirst generated programs by re-
placing increasing proportion of range checks with equality checks
(from 0% to 100%), and evaluated the fuzzers on the generated bench-
marks. Note that we used the default parameters (§5.2) to generate

Table 3: Performance comparison with varying proportion

of equality checks.

Measure Tool 0% 25% 50% 75% 100%

Coverage

(%)

AFL 57.7 28.7 22.1 20.9 16.6
AFLGo 52.2 29.6 24.3 20.7 18.5
AFL++ 87.7 53.2 41.4 41.0 35.3
Eclipser 82.2 28.7 19.2 18.0 13.4
Fuzzolic 86.6 77.8 63.8 53.3 48.1

Bugs

(%)

AFL 64 0 0 0 0
AFLGo 32 0 0 0 0
AFL++ 100 16 36 12 20
Eclipser 100 0 0 0 0
Fuzzolic 100 88 80 40 28

TTE

(h)

AFL 18.20 - - - -
AFLGo 20.21 - - - -
AFL++ 0.51 18.59 12.75 13.85 18.09
Eclipser 1.50 - - - -
Fuzzolic 1.10 8.10 11.83 15.54 17.86

The best results in each column and in each row are in grey and bold, respectively.

the benchmark, including the five default values of 𝐶seed for each
equality check proportion to produce a benchmark of 25 programs.
Table 3 presents the results. In summary, as the proportion of equal-
ity checks increased from 0% to 100%, the code coverage achieved
by most tools declined considerably, except Fuzzolic.

The results are intuitive because Fuzzolic uses symbolic exe-
cution which excels at finding solutions for equality constraints.
Consequently, only Fuzzolic, and AFL++ to some extent, were able
to find the bugs by penetrating all the synthesized conditions. There-
fore, we conclude that equality constraints can still pose difficulties
for many grey-box fuzzers.

5.5.2 Impact of Real-Constraints-based Rendering. Recall that Fuz-
zle can render all the conditional expressions solely based on the
path formulas from𝐶smt (§4.3.2). We ran fuzzers on the benchmark
generated with this strategy, andmeasured the performance. Table 4
compares the two results with or without using the strategy. With
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Table 4: Performance comparison with or without real-

constraints-based rendering strategy.

Measure Tool

CVE-2016-4487 CVE-2016-4491 CVE-2016-4493

Range Constr. Range Constr. Range Constr.

Coverage

(%)

AFL 37.8 26.8 25.3 18.9 24.6 12.7
AFLGo 39.9 30.5 32.8 21.3 36.2 16.3
AFL++ 75.8 75.9 29.0 26.2 76.1 51.0
Eclipser 74.2 51.2 25.4 20.3 61.1 26.5
Fuzzolic 79.8 80.0 55.4 60.6 77.0 70.6

Bugs

(%)

AFL 12 4 0 0 0 0
AFLGo 8 0 0 0 0 0
AFL++ 84 100 4 0 80 80

Eclipser 92 72 0 0 80 8
Fuzzolic 100 100 48 84 100 100

TTE

(h)

AFL 21.47 16.93 - - - -
AFLGo 19.72 - - - - -
AFL++ 2.43 3.39 18.73 - 6.26 6.28
Eclipser 6.74 8.95 - - 10.01 15.12
Fuzzolic 1.59 2.24 7.73 10.87 2.41 4.64

Table 5: Performance comparison with varying maze sizes.

CVE-2016-4487 CVE-2016-4491 CVE-2016-4493

10×10 20×20 30×30 10×10 20×20 30×30 10×10 20×20 30×30

C
o
v
.

(%
)

AFL 89.1 77.8 37.8 62.9 47.9 25.3 86.3 60.5 24.6
AFLGo 89.2 78.1 39.9 63.8 58.6 32.8 86.1 61.7 36.2
AFL++ 89.1 87.6 75.8 57.9 50.1 29.0 86.4 81.6 76.1
Eclipser 89.2 87.5 74.2 65.8 46.4 25.4 84.7 75.4 61.1
Fuzzolic 89.1 84.0 79.8 80.6 83.6 55.4 88.7 83.7 77.0

B
u
g
s

(%
)

AFL 100 76 12 8 12 0 92 36 0
AFLGo 100 72 8 24 4 0 92 36 0
AFL++ 100 100 84 8 4 4 96 92 80
Eclipser 100 100 92 20 0 0 92 84 80
Fuzzolic 100 100 100 80 96 48 100 100 100

T
T
E

(h
)

AFL 1.76 15.08 21.47 15.26 15.27 - 4.74 16.90 -
AFLGo 1.88 15.70 19.72 13.18 19.91 - 5.10 17.40 -
AFL++ 1.38 1.32 2.43 17.14 18.80 18.73 3.44 3.35 6.26
Eclipser 0.91 4.25 6.74 19.91 - - 7.15 9.62 10.01
Fuzzolic 0.38 1.33 1.59 8.02 6.76 7.73 1.23 2.35 2.41

the real-constraints-based rendering strategy, the fuzzers achieved
24.32% less branch coverage, 9.87% less success rate, and 34.60%
slower in finding bugs. This is because the generated programs in-
clude more complex conditionals compared to simple range checks.
Thus, we conclude that the way of rendering path conditions can
greatly impact the difficulty level of synthesized benchmarks.

5.6 RQ4: Customizable Difficulty

Recall from §5.4.4 𝐶smt significantly affects the performance of the
fuzzers by making the synthesized bugs too difficult to find. Thus,
a natural question follows: Can Fuzzle customize the difficulty of
generated benchmark while still using the same 𝐶smt? To answer
this question, we generated programs with smaller sizes (10x10
and 20x20) while using the same 𝐶smt. For each size, we generated
five different programs using five PRNG seeds (𝐶seed). We then ran
the fuzzers on all programs we generated (five times per program
as described in §5.1.2). Table 5 summarizes the results with three
different values for 𝐶smt and 𝐶size. Note the columns with 𝐶size =
30x30 represent the results from the default setup used in §5.4.

Table 6: Time to expose bugs in two different setups.

AFL [62] AFL++ [21] Eclipser [14] Fuzzolic [6]

Ours∗ Orig† Ours∗ Orig† Ours∗ Orig† Ours∗ Orig†

CVE-2016-4487 21.7 3.8 1.6 0.4 5.5 0.9 1.5 1.3
CVE-2016-4489 20.7 8.8 5.9 1.1 7.9 1.6 2.6 2.7
CVE-2016-4491 > 24.0 > 24.0 18.7 8.9 > 24.0 > 24.0 7.2 8.7

CVE-2016-4492 23.5 7.3 1.1 4.6 4.3 6.9 1.3 7.6
CVE-2016-4493 > 24.0 4.6 4.1 1.7 7.5 4.3 2.2 1.9
CVE-2016-6131 > 24.0 > 24.0 9.9 > 24.0 11.9 > 24.0 4.1 > 24.0

* Fuzzle-generated benchmark. † GNU Binutils benchmark.

Overall, the fuzzers foundmore bugs aswe decrease𝐶size, demon-
strating that the difficulty of finding the bug can easily be controlled
with 𝐶size, even if 𝐶smt is used. For example, in the programs gen-
erated with CVE-2016-4493, both AFL and AFLGo were not able
to find any bugs in the default-sized mazes, but found almost all
bugs in 10x10 mazes. Furthermore, the fuzzers were able to find the
bugs much quicker in smaller mazes. The time taken to find bugs
in the programs generated with CVE-2016-4487 were reduced by
12x, 10x, 7x, 4x, for AFL, AFLGo, Eclipser, and Fuzzolic respectively.
Thus, we conclude that varying 𝐶size is an effective way to control
the difficulty of generated benchmarks.

5.7 RQ5: Representative Performance

How do Fuzzle-generated programs compare to real-world pro-
grams? To answer this question, we ran the same set of fuzzers,
excluding AFLGowhich requires the source code to run, on both the
Fuzzle-generated programs and the programs in GNU Binutils v2.26.
When we synthesize programs, we used the default configuration
except that we set𝐶smt with the six path formulas obtained by trig-
gering the six CVEs from the same version of the Binutils programs.
Table 6 shows the results. The “Ours” and “Orig” columns represent
the time taken to find the bug on the synthesized programs and the
original programs, respectively. Note that the reported numbers
are the median of all 25 experimental runs.

Overall, both program sets show a similar trend in the difficulty
level of finding the bugs. For example, most fuzzers found CVE-
2016-4487 from Binutils within the first few hours of fuzzing, but
struggled to find CVE-2016-4491 and CVE-2016-6131. The same
trend is shown in the respective Fuzzle-generated programs. Note,
however, that the fuzzers spent a slightly longer time to find the
bugs in the synthesized programs compared to the original pro-
grams. One notable exception was AFL, which showed the worst
performance overall. This is because it was spending most of its
time exploring irrelevant maze paths added by Fuzzle.

Furthermore, Fuzzolic and AFL++ outperformed other fuzzers
on both program sets. For example, in the programs generated with
CVE-2016-4491, only Fuzzolic and AFL++ found the synthesized
bug within 24 hours. Likewise, the two fuzzers are the only fuzzers
that found CVE-2016-4491 in the original Binutils. Therefore the
performance of fuzzers on the programs generated with 𝐶smt are
representative of their performance on real benchmarks.
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(a) Backtracking (b) Prim’s (c) Sidewinder

Figure 5: Coverage achieved by AFL for three different pro-

grams synthesized with three different algorithms.

5.8 RQ6: Coverage Visualization

Recall from §2, one of our motivations was to provide visual feed-
back regarding the progress of a fuzzing campaign. In this section,
we demonstrate that the coverage visualization is indeed useful in
understanding and comparing the fuzzers.

5.8.1 Case Study 1. We first generated programs with three dif-
ferent maze generation algorithms (the backtracking, Prim’s, and
Sidewinder) and the path formula obtained from CVE-2016-4491,
while using the default values for the other parameters. We then
ran AFL once for 24 hours for each of the programs. The branch
coverage achieved by the backtracking, Prim’s, and Sidewinder
were 31.2%, 42.4%, and 60.2%, respectively. We then converted the
coverage results into the maze figures shown in Figure 5. Note the
orange markings indicate that the marked edges are guarded with
conditional expressions taken from 𝐶smt. These markings, there-
fore, essentially highlight the buggy path of the program as we used
the default rendering strategy. From these figures, we can easily
see which regions were covered by AFL, and how close AFL was to
finding the bug in the program.

5.8.2 Case Study 2. The visualization feature of Fuzzle can also be
used to show the progress of fuzzing over time. To demonstrate our
idea, we created an animated GIF showing the hourly code coverage
improvement on a program in our benchmark. We provide a URL
for reference.2 The animated GIF clearly and intuitively shows
the progress of the fuzzer. This idea can also be used to present
real-time fuzzing status during a fuzzing campaign.

6 RELATEDWORK

6.1 Bug Synthesis and Fuzzing Benchmarks

Current bug synthesizers are mainly inspired by mutation test-
ing [9, 34, 43, 55], which aims to judge the quality of a test suite
by mutating the programs. The key difference between the two is
the evaluation target: bug synthesizers attempt to evaluate fuzzers,
whereas mutation testers evaluate test suites.

LAVA [19, 20] is a seminal bug synthesizer that identifies poten-
tial attack points through dynamic taint analysis. For each identi-
fied point, it injects a bug that is guarded by a magic value check.
EvilCoder [56] modifies the source code of the target program to
remove protection mechanisms, such as input sanitization state-
ments, and reintroduce the corresponding potential vulnerability
that was previously guarded by those mechanisms. Apocalypse [58]
2https://softsec-kaist.github.io/Fuzzle

focuses on generating challenging bugs for fuzzers by embedding
a state machine such that the injected bug is only triggered when
a series of non-trivial control-flow and dataflow conditions are
met. Bug-Injector [36] inserts bugs based on bug templates into
real-world programs to generate benchmarks for the evaluation of
static analysis tools. It first finds a suitable injection location, where
the state satisfies the preconditions for some bug templates, then
it modifies the program to inject the buggy code. FixReverter [63]
injects bugs by identifying code sites that match the bugfix pat-
terns and reverting the fix. To ensure that the identified code site
satisfies the semantic conditions for a triggerable bug, FixReverter
performs static analysis and checks that the injection site is reach-
able and that there is dataflow from the variable involved in the
bugfix pattern to a subsequent dereference site.

All these approaches introduce synthetic bugs by modifying a
given program. Note, however, Fuzzle is unique in that it synthesizes
a buggy program from scratch. Indeed, our technique is closely
related to program synthesis [24, 33, 45, 51, 53]. There is a recent
fuzzing benchmark, named Magma [26], which is orthogonal to our
work as the benchmark is manually generated by careful auditing.

6.2 Maze and Software Testing

Mazes have been commonly used for evaluating symbolic execu-
tors, such as KLEE. One famous example of such maze programs is
demonstrated in Felipe’s tutorial [49]. Fuzzle, inspired by Felipe’s
maze programs, also synthesizes programs based onmazes. The two
approaches, nevertheless, differ in two major ways. First, Felipe’s
approach uses a two-dimensional array and its indices to represent
the maze and the cells in the maze, respectively. However, in Fuzzle,
each cell of the maze is represented as a function in the program,
which renders the shape of the resulting program similar to it of
recursive descent parsers. The maze program generated by Fuzzle
is unique also in that it provides only the valid choices at each cell,
instead of always allowing all 4 directions as in the Felipe’s imple-
mentation. Fuzzle’s approach more closely resembles the intuitive
way of solving mazes, as it prevents the immediate termination of
the program upon choosing one of the invalid choices, i.e. crashing
into the wall of the maze.

6.3 Fuzzing

Fuzz testing (or fuzzing) has been a great success in finding vari-
ous software bugs [2, 8, 12, 15, 16, 25, 39–42, 47, 48, 50, 57]. In this
paper, we use the term “fuzzing” to mean various different testing
techniques that involve automatic test case generation, such as con-
colic testing [7, 23], grey-box fuzzing [3, 14], and hybrid fuzzing [6].
Although there have been remarkable advances in the field, there
still lack large-scale benchmarks that provide precise ground truth.
Fuzzle takes the first step toward synthesizing a fuzzing benchmark
without modifying the existing programs.

7 DISCUSSION AND FUTUREWORK

We are aware that, as in any empirical study, there are various
threats to the validity of our results and conclusions. To mitigate
the threat of the selection bias, we chose fuzzers of various types,
covering grey-box fuzzing, symbolic execution, and directed fuzzing.
Furthermore, we generated a large benchmark for fuzzer evaluation

https://softsec-kaist.github.io/Fuzzle
https://softsec-kaist.github.io/Fuzzle
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by varying each parameter values to ensure that our results are not
restricted to a particular setup of parameter values. The evaluation
of Fuzzle’s visualization feature is also subject to experimenter
bias, as the usefulness of the feature was assessed based on our
interpretation of the results. We leave it as future work to perform
a user study to further validate our visualization feature.

As Fuzzle generates buggy programs from mazes, the fuzzers
may try to adapt to the system, simply by using a maze solver to
find the solution path of the maze prior to fuzzing. Nevertheless, our
design is not fundamentally limited to such an overfitting problem
as we allow any node in a maze to be a terminal node (i.e., the buggy
function). Additionally, we can obfuscate the buggy function so
that it cannot be easily detected. Specifically, we can add an abort
system call that is guarded with an opaque predicate [17] in every
function of the program. In this way, every program generated by
Fuzzle contains a randomly placed bug, preventing fuzzers from
taking advantage of the maze-based design of the programs.

Distinguishing between buggy and non-buggy paths is funda-
mentally difficult when Fuzzle uses the real-constraints-based ap-
proach (§4.3.2), because it renders every conditional using real path
constraints. Additionally, we can employ different strategies to syn-
thesize the conditionals. For example, we can randomly synthesize
our branch conditions similar to the way Csmith [61] generates
random C programs. The programs generated in this way would be
more predictable than the human-developed programs comparable
to how the bug-triggering Csmith fuzzer-generated programs are
highly repetitive and predictable [35].

While Fuzzle can encode various real-world bug types by consid-
ering buggy path conditions, it cannot synthesize bugs that involve
subtle data-flow changes. For example, it currently cannot synthe-
size an off-by-one error. One may expand the current design of
Fuzzle to enable data flows between functions, and we believe this
is a promising direction for future research.

We can further extend Fuzzle by employing a global variable to
fine-control path conditions and introduce complex program states
(§4.2). For example, we can introduce a counter variable to keep
track of the number of times each function has been called. Then
the value of such variable can be used in the conditions required
to invoke the function calls or to terminate the program when it
reaches a predefined limit. Lastly, we can allow generated programs
to have more than 4 edges per node by generating mazes of different
shapes, such as those on a hexagonal grid. We believe extending
Fuzzle to support these features is a promising future work.

8 CONCLUSION

In this paper, we introduced Fuzzle, the first bug synthesizer that
does not rely on existing programs. The key intuition of Fuzzle is to
convert every path in a randomly generated maze into a call path
of the synthesized program. Our design provides intuitive visual
feedback for software testers, while enabling fine-grained control
on the buggy logic. We evaluated Fuzzle with five state-of-the-art
fuzzers to understand its value. We empirically showed that Fuzzle
is an efficient bug synthesizer that can effectively evaluate various
state-of-the-art fuzzers.
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