
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 1

Revisiting Binary Code Similarity Analysis using
Interpretable Feature Engineering and Lessons

Learned
Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, Yongdae Kim

Abstract—Binary code similarity analysis (BCSA) is widely used for diverse security applications, including plagiarism detection,
software license violation detection, and vulnerability discovery. Despite the surging research interest in BCSA, it is significantly
challenging to perform new research in this field for several reasons. First, most existing approaches focus only on the end results,
namely, increasing the success rate of BCSA, by adopting uninterpretable machine learning. Moreover, they utilize their own
benchmark, sharing neither the source code nor the entire dataset. Finally, researchers often use different terminologies or even use
the same technique without citing the previous literature properly, which makes it difficult to reproduce or extend previous work. To
address these problems, we take a step back from the mainstream and contemplate fundamental research questions for BCSA. Why
does a certain technique or a certain feature show better results than the others? Specifically, we conduct the first systematic study on
the basic features used in BCSA by leveraging interpretable feature engineering on a large-scale benchmark. Our study reveals
various useful insights on BCSA. For example, we show that a simple interpretable model with a few basic features can achieve a
comparable result to that of recent deep learning-based approaches. Furthermore, we show that the way we compile binaries or the
correctness of underlying binary analysis tools can significantly affect the performance of BCSA. Lastly, we make all our source code
and benchmark public and suggest future directions in this field to help further research.

Index Terms—Binary code similarity analysis, similarity measures, feature evaluation and selection, benchmark.

✦

1 INTRODUCTION

P ROGRAMMERS reuse existing code to build new soft-
ware. It is common practice for them to find the source

code from another project and repurpose that code for their
own needs [1]. Inexperienced developers even copy and
paste code samples from the Internet to ease the develop-
ment process.

This trend has deep implications for software security
and privacy. When a programmer takes a copy of a buggy
function from an existing project, the bug will remain intact
even after the original developer has fixed it. Furthermore,
if a developer in a commercial software company inadver-
tently uses library code from an open-source project, the
company can be accused of violating an open-source license
such as the GNU General Public License (GPL) [2].

Unfortunately, detecting such problems from binary
code using a similarity analysis is not straightforward, par-
ticularly when the source code is not available. This is
because binary code lacks high-level abstractions, such as
data types and functions. For example, it is not obvious from
binary code to determine whether a memory cell represents
an integer, a string, or another data type. Moreover, identi-
fying precise function boundaries is radically challenging in
the first place [3], [4].

• D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim are with KAIST.
E-mail: { dkay, hahah, sangkilc, sl.son, yongdaek }@kaist.ac.kr

Corresponding author: Sang Kil Cha.
Manuscript received: November 21, 2020.
Manuscript revised (major): July 16, 2021.
Manuscript revised (minor): Feb 22, 2022.
Manuscript accepted: June 26, 2022.

Therefore, measuring the similarity between binaries has
been an essential research topic in many areas, such as
malware detection [5], [6], plagiarism detection [7], [8], au-
thorship identification [9], and vulnerability discovery [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21].

However, despite the surging research interest in binary
code similarity analysis (BCSA), we found that it is still
significantly challenging to conduct new research on this
field for several reasons.

First, most of the methods focus only on the end re-
sults without considering the precise reasoning behind their
approaches. For instance, during our literature study in
the field, we observed that there is a prominent research
trend in applying BCSA techniques to cross-architecture and
cross-compiler binaries of the same program [11], [12], [13],
[15], [16], [19], [22]. Those approaches aim to measure the
similarity between two or more seemingly distinct bina-
ries generated from different compilers targeting different
instruction sets. To achieve this, multiple approaches have
devised complex analyses based on machine learning to
extract the semantics of the binaries, assuming that their
semantics should not change across compilers nor target
architectures. However, none of the existing approaches
clearly justifies the necessity of such complex semantics-
based analyses. One may imagine that a compiler may gen-
erate structurally similar binaries for different architectures,
even though they are syntactically different. Do compilers
and architectures really matter for BCSA in this regard?
Unfortunately, it is difficult to answer this question because
most of the existing approaches leverage uninterpretable
machine learning techniques [12], [13], [19], [20], [21], [23],

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 2

[24], [25], [26], [27], [28], [29]. Further, it is not even clear
why a BCSA algorithm works only on some benchmarks
and not on others.

Second, every existing paper on BCSA that we studied
utilizes its own benchmark to evaluate the proposed tech-
nique, which makes it difficult to compare the approaches
with one another. Moreover, reproducing the previous re-
sults is often infeasible because most researchers reveal
neither their source code nor their dataset. Only 10 of the
43 papers that we studied fully released their source code,
and only two of them opened their entire dataset.

Finally, researchers in this field do not use unified ter-
minologies and often miss out on critical citations that have
appeared in top-tier venues of other fields. Some of them
even mistakenly use the same technique without citing the
previous literature properly. These observations motivate
one of our research goals, which is to summarize and review
widely adopted techniques in this field, particularly in terms
of generating features.

To address these problems, we take a step back from the
mainstream and contemplate fundamental research ques-
tions for BCSA. As the first step, we precisely define the
terminologies and categorize the features used in the previ-
ous literature to unify terminologies and build knowledge
bases for BCSA. We then construct a comprehensive and re-
producible benchmark for BCSA to help researchers extend
and evaluate their approaches easily. Lastly, we design an
interpretable feature engineering model and conduct a se-
ries of experiments to investigate the influence of compilers,
their options, and their target architectures on the syntactic
and structural features of the resulting binaries.

Our benchmark, which we refer to as BINKIT, encom-
passes various existing benchmarks. It is generated by using
major compiler options and targets, which include 8 archi-
tectures, 9 different compilers, 5 optimization levels, as well
as various other compiler flags. BINKIT contains 243,128
distinct binaries and 36,256,322 functions built for 1,352
different combinations of compiler options, on 51 real-world
software packages. We also provide an automated script
that helps extend BINKIT to handle different architectures
or compiler versions. We believe this is critical because it is
not easy to modify or extend previous benchmarks, despite
us having their source codes. Cross-compiling software
packages using various compiler options is challenging
because of numerous environmental issues. To the best of
our knowledge, BINKIT is the first reproducible and extensible
benchmark for BCSA.

With our benchmark, we perform a series of rigorous
studies on how the way of compilation can affect the result-
ing binaries in terms of their syntactic and structural shapes.
To this end, we design a simple interpretable BCSA model,
which essentially computes relative differences between
BCSA feature values. We then build a BCSA tool that we
call TIKNIB, which employs our interpretable model. With
TIKNIB, we found several misconceptions in the field of
BCSA as well as novel insights for future research as follows.

First, the current research trend in BCSA is founded on
a rather exaggerated assumption: binaries are radically dif-
ferent across architectures, compiler types, or compiler ver-
sions. However, our study shows that this is not necessarily
the case. For example, we demonstrate that simple numeric

features, such as the number of incoming/outgoing calls
in a function, are largely similar across binaries compiled
for different architectures. We also present other elementary
features that are robust across compiler types, compiler
versions, and even intra-procedural obfuscation. With these
findings, we show that TIKNIB with those simple features
can achieve comparable accuracy to that of the state-of-the-
art BCSA tools, such as VulSeeker, which relies on a complex
deep learning-based model.

Second, most researchers focus on vectorizing features
from binaries, but not on recovering lost information during
the compilation, such as variable types. However, our ex-
perimental results suggest that focusing on the latter can be
highly effective for BCSA. Specifically, we show that TIKNIB
with recovered type information achieves an accuracy of
over 99% on all our benchmarks, which was indeed the
best result compared to all the existing tools we studied.
This result highlights that recovering type information from
binaries can be as critical as developing a novel machine
learning algorithm for BCSA.

Finally, the interpretability of the model helps advance
the field by deeply understanding BCSA results. For exam-
ple, we present several practical issues in the underlying
binary analysis tool, i.e., IDA Pro, which is used by TIKNIB,
and discuss how such errors can affect the performance of
BCSA. Since our benchmark has the ground truth and our
tool employs an interpretable model, we were able to easily
pinpoint those fundamental issues, which will eventually
benefit binary analysis tools and the entire field of binary
analysis.
Contribution. In summary, our contributions are as follows:
• We study the features and benchmarks used in the past lit-

erature regarding BCSA and clarify less-explored research
questions in this field.

• We propose BINKIT1, the first reproducible and expand-
able BCSA benchmark. It contains 243,128 binaries and
36,256,322 functions compiled for 1,352 distinct combina-
tions of compilers, compiler options, and target architec-
tures.

• We develop a BCSA tool, TIKNIB2, which employs a
simple interpretable model. We demonstrate that TIKNIB
can achieve an accuracy comparable to that of a state-of-
the-art deep learning-based tool. We believe this will serve
as a baseline to evaluate future research in this field.

• We investigate the efficacy of basic BCSA features with
TIKNIB on our benchmark and unveil several misconcep-
tions and novel insights.

• We make our source code, benchmark, and experimental
data publicly available to support open science.

2 BINARY CODE SIMILARITY ANALYSIS

Binary Code Similarity Analysis (BCSA) is the process of
identifying whether two given code snippets have similar
semantics. Typically, it takes in two code snippets as input
and returns a similarity score ranging from 0 to 1, where
0 indicates the two snippets are completely different, and
1 means that they are equivalent. The input code snippet

1. https://github.com/SoftSec-KAIST/binkit
2. https://github.com/SoftSec-KAIST/tiknib

https://github.com/SoftSec-KAIST/binkit
https://github.com/SoftSec-KAIST/tiknib

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 3

Binary
Code

Assembly
Instruction

Intermediate
Representation

Syntactic Analysis (S1) Structural Analysis (S2)

BB

BB BB

BB

Func

Func Func

Func

Func

Control Flow Graph Call Graph

Semantic Analysis (S3)

Data Flow
I/O samples

I/O constraints
Path constraints

Variables
System/Library
Function Type

Embedded Vectors

Similarity Comparison (S4)

Scoring
Numeric vector
Exact matching
Distance check
Graph matching
Machine learning
Deep learning

S1 S2 S3

Binary Analysis Steps

Similarity Comparison Syntactic

Semantic

Structural Presemantic
Features

F

Semantic
Features

F

F

S1 S2 S3

F

F

F

Fig. 1: Typical workflow of binary analysis (upper) and simi-
larity comparison (lower) in binary code similarity analysis.
Tools may skip some of the steps.

can be a function [11], [16], [19], [21], [24], [30], [31], [32], or
even an entire binary image [7], [8]. Additionally, the actual
comparison can be based on functions, even if the inputs are
entire binary images [12], [13], [15], [23], [33], [34], [35].

At a high level, BCSA performs four major steps as
described below:
(S1) Syntactic Analysis. Given a binary code snippet, one
parses the code to obtain a disassembly or an Abstract Syn-
tax Tree (AST) of the code, which is often referred to as an
Intermediate Representation (IR) [36]. This step corresponds
to the syntax analysis in traditional compiler theory, where
source code is parsed down to an AST. If the input code is
an entire binary file, we first parse it based on its file format
and split it into sections.
(S2) Structural Analysis. This step analyzes and recovers
the control structures inherent in the given binary code,
which are not readily available from the syntactic analysis
phase (S1). In particular, this step involves recovering the
control-flow graphs (CFGs) and call graphs (CGs) in the bi-
nary code [37], [38]. Once the control-structural information
is obtained, one can use any attribute of these control struc-
tures as a feature. We distinguish this step from semantic
analysis (S3) because binary analysis frameworks typically
provide CFGs and CGs for free; the analysts do not have to
write a complex semantic analyzer.
(S3) Semantic Analysis. Using the control-structural in-
formation obtained from S2, one can perform traditional
program analyses, such as data-flow analysis and symbolic
analysis, on the binary to figure out the underlying seman-
tics. In this step, one can generate features that represent
sophisticated program semantics, such as how register val-
ues flow into various program points. One can also enhance
the features gathered from S1–S2 along with the semantic
information.
(S4) Vectorization and Comparison. The final step is to vec-
torize all the information gathered from S1–S3 to compute
the similarity between the binaries. This step essentially
results in a similarity score between 0 and 1.

Figure 1 depicts the four-step process. The first three
steps determine the inputs to the comparison step (S4),
which are often referred to as features. Some of the first three
steps can be skipped depending on the underlying features
being used. The actual comparison methodology in S4 can

also vary depending on the BCSA technique. For example,
one may compute the Jaccard distance [39] between feature
sets, calculate the graph edit distance [40] between CFGs, or
even leverage deep learning algorithms [41], [42]. However,
as the success of any comparison algorithm significantly depends
on the chosen features, this paper focuses on features used in
previous studies rather than the comparison methodologies.

In this section, we first describe the features used in the
previous papers and their underlying assumptions (§2.1).
We then discuss the benchmarks used in those papers and
point out their problems (§2.2). Lastly, we present several
research questions identified during our study (§2.3).

Scope. Our study focuses on 43 recent BCSA papers (from
2014 to 2020) that appeared in 27 top-tier venues of different
computer science areas, such as computer security, software
engineering, programming languages, and machine learn-
ing. There are, of course, plentiful research papers in this
field, all of which are invaluable. Nevertheless, our focus here
is not to conduct a complete survey on them but to introduce
a prominent trend and the underlying research questions in this
field, as well as to answer those questions. We particularly focus
on features and datasets used in those studies, which lead
us to four underexplored research questions that we will
discuss in §2.3; our goal is to investigating these research
questions by conducting a series of rigorous experiments.
Because of the space limit, we excluded papers [43], [44],
[45], [46], [47], [48], [49], [50], [51], [52], [53] that were pub-
lished before 2014 and those not regarding top-tier venues,
or binary diffing tools [54], [55], [56] used in the industry.
Additionally, we excluded papers that aimed to address a
specific research problem such as malware detection, library
function identification, or patch identification. Although our
study focuses only on recent papers, we found that the
features we studied in this paper are indeed general enough;
they cover most of the features used in the older papers.

2.1 Features Used in Prior Works

We categorize features into two groups based on when they
are generated during BCSA. Particularly, we refer to features
obtained before and after the semantic analysis step (S3) as
presemantic features and semantic features, respectively. Prese-
mantic features can be derived from either S1 or S2, and
semantic features can be derived from S3. We summarize
both features used in the recent literature in Table 1.

2.1.1 Presemantic Features

Presemantic features denote direct or indirect outcomes of
the syntactic (S1) and structural (S2) analyses. Therefore, we
refer to any attribute of binary code, which can be derived
without a semantic analysis, as a presemantic feature. We
can further categorize presemantic features used in previous
literature based on whether the feature represents a number
or not. We refer to features representing a number as numeric
presemantic features, and others as non-numeric presemantic
features. The first half of Table 1 summarizes them.
Numeric presemantic features. Counting the occurrences
of a particular property of a program is common in BCSA
as such numbers can be directly used as a numeric vector in
the similarity comparison step (S4). We categorize numeric

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 4

TABLE 1: Summary of the features used in previous studies.
2014 2015 2016 2017 2018 2019 2020

T
ED

EM
Tr

ac
y

C
oP

Lo
PD

BL
EX

Bi
nC

lo
ne

M
ul

ti
-k

-M
H

di
sc

ov
R

E
G

en
iu

s
Es

h
Bi

nG
o

M
oc

ki
ng

Bi
rd

K
am

1n
0

Bi
nD

N
N

Bi
nS

ig
n

X
m

at
ch

G
em

in
i

G
it

Z
Bi

nS
im

Bi
nS

eq
ue

nc
e

IM
F-

si
m

C
A

C
om

pa
re

A
SE

17

Bi
nA

rm
SA

N
ER

18
Bi

nG
o-

E
W

SB
Bi

nM
at

ch
M

A
SE

S1
8

Z
ee

k
Fi

rm
U

p

α
D

iff
V

ul
Se

ek
er

In
ne

rE
ye

A
sm

2V
ec

SA
FE

BA
R

19
i

BA
R

19
ii

Fu
nc

N
et

D
ee

pB
in

D
iff

Im
O

pt

A
C

C
ES

S2
0

Pa
tc

he
ck

o
B

IN
K

IT

[10] [57] [7] [8] [30] [58] [22] [11] [23] [59] [15] [33] [32] [60] [61] [16] [12] [62] [63] [34] [31] [35] [64] [17] [65] [18] [66] [67] [25] [68] [14] [19] [13] [24] [20] [21] [26] [29] [69] [27] [70] [53] [28]⋆

Pr
es

em
an

ti
c BB-level Numbers · · · · · · · # H# · · · · · · · H# · · · · · · # · · · · · · · · H# · · · · · H# · · · H# #

CFG-level Numbers · · · · · # · # H# · · · · · # · H# · · # · · · # # # · · · · · · H# · · · · · H# · · · H# #
CG-level Numbers · · · · · · · # · · # · · · # · · · · · · · · # # # · · · · · # · · H# · · · · · · · H# #

Raw Bytes · H# · · H# · · · · · · · · · # · ·
Instructions # # · · · # · · · · # · # # · · · · · # · · · · · # · · · · · · · H# H# H# H# H# · H# H# · · ·
Functions · · · · · · · · · · · · · · # · · · · · · · · · · · · · · · · # · · · · · · · · · · · ·

Se
m

an
ti

c

Symbolic Constraints · · ## · · · · · # · · · · · # · · # ·
I/O Samples · · · # · · # · · · # · · · · · · · · · · · · · · # · · · · · · · · · · · · · · · · · ·
Runtime Behavior · · · · # · · · · · · # · · · · · · # · # # # · · # # # · · · · · · · · · · · · · · H# ·
Manual Annotation · · · · · · · · · · # · · · # · · · # · · · · · · # · · · · · · · · · · · · · · · · · ·
Program Slices, PDG · · · · · · · · · · · · · · · · · # · · · · · · · · · · · # # · H# · · · · · · · · · · ·
Recovered Variables · · · · · · · # H# · · · · · # · H# · · · · · · # # # · · · · · · · · · · · · H# · · · H# ·
Embedded Vector · · · · · · · · # · · · · · · · # · · · · · · · · · · · # · · # # # # # # # # # # · # ·
H# This mark denotes a feature that is not directly used for similarity comparison but is required for extracting other features used in post-processing.

presemantic features into three groups based on the granu-
larity of the information required for extracting them.

First, many researchers extract numeric features from
each basic block of a target code snippet [11], [12], [13],
[17], [23], [28], [28], [71]. One may measure the frequency of
raw opcodes (mnemonics) [17], [71] or grouped instructions
based on their functionalities (e.g., arithmetic, logical, or
control transfer) [11], [28]. This numeric form can also be
post-processed through machine learning [12], [13], [23],
[28], as we further discuss in §2.1.2.

Similarly, numeric features can be extracted from a CFG
as well. CFG-level numeric features can also reflect struc-
tural information that underlies a CFG. For example, a func-
tion can be encoded into a numeric vector, which consists
of the number of nodes (i.e., basic blocks) and edges (i.e.,
control flow), as well as grouped instructions in its CFG [11],
[28], [61]. One may extend such numeric vectors by adding
extra features such as the number of successive nodes or the
betweenness centrality of a CFG [12], [23], [28]. The concept
of 3D-CFG [72], which places each node in a CFG onto a
3D space, can be utilized as well. Here, the distances among
the centroids of two 3D-CFGs can represent their similarity
score [18]. Other numeric features can be the graph energy,
skewness, or cyclomatic complexity of a CFG [17], [28], [71].
Even loops in a CFG can be converted into numeric features
by counting the number of loop headers and tails, as well as
the number of forward and backward edges [65].

Finally, previous approaches utilize numeric features
obtained from CGs. We refer to them as CG-level numeric
features. Most of these approaches measure the number of
callers and callees in a CG [11], [17], [19], [23], [28], [65],
[71], [73]. When extracting these features, one can selectively
apply an inter-procedural analysis using the ratio of the
in-/out- degrees of the internal callees in the same binary
and the external callees of imported libraries [15], [18], [20],
[28]. This is similar to the coupling concept [74], which
analyzes the inter-dependence between software modules.
The extracted features can also be post-processed using
machine learning [19].
Non-numeric presemantic features. Program properties
can also be directly used as a feature. The most straightfor-
ward approach involves directly comparing the raw bytes of
binaries [6], [53], [75]. However, people tend to not consider
this approach because byte-level matching is not as robust

compared to simple code modifications. For example, anti-
malware applications typically make use of manually writ-
ten signatures using regular expressions to capture similar,
but syntactically different malware instances [76]. Recent
approaches have attempted to extract semantic meanings
from raw binary code by utilizing a deep neural network
(DNN) to build a feature vector representation [19], [25].

Another straightforward approach involves considering
the opcodes and operands of assembly instructions or their
intermediate representations [18], [77]. Researchers often
normalize operands [32], [34], [57] because their actual
values can significantly vary across different compiler op-
tions. Recent approaches [62], [70] have also applied re-
optimization techniques [78] for the same reason. To com-
pute a similarity score, one can measure the number of
matched elements or the Jaccard distance [15] between
matched groups, within a comparison unit such as a sliding
window [58], basic block [34], or tracelet [57]. Here, a tracelet
denotes a series of basic blocks. Although these approaches
take different comparison units, one may adjust their results
to compare two procedures, or to find the longest common
subsequence [32], [34] within procedures. If one converts
assembly instructions to a static single assignment (SSA)
form, s/he can compute the tree edit distance between
the SSA expression trees as a similarity score [10]. Recent
approaches have proposed applying popular techniques in
natural language processing (NLP) to represent an assembly
instruction or a basic block as an embedded vector, reflecting
their underlying semantics [20], [21], [24], [26], [27], [29].

Finally, some features can be directly extracted from
functions. These features may include the names of im-
ported functions, and the intersection of two inputs can
show their similarity [19], [61]. Note that these features can
collaborate with other features as well.

2.1.2 Semantic Features
We call the features that we can obtain from the semantic
analysis phase (S3) semantic features. To obtain semantic
features, a complex analysis, such as symbolic execution [7],
[8], [15], [18], [63], dynamic evaluation of code snippets [8],
[30], [31], [33], [35], [63], [64], [66], [67], or machine learning-
based embedding [12], [13], [19], [20], [21], [23], [24], [25],
[26], [27], [28], [29] is necessary. There are mainly seven
distinct semantic features used in the previous literature, as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 5

listed in Table 1. It is common to use multiple semantic fea-
tures together or combine them with presemantic features.

First, one straightforward method to represent the se-
mantics of a given code snippet is to use symbolic con-
straints. The symbolic constraints could express the output
variables or states of a basic block [7], a program slice [16],
[59], [63], or a path [8], [79], [80]. Therefore, after extracting
the symbolic constraints from a target comparison unit, one
can compare them using an SMT solver.

Second, one may represent code semantics using I/O
samples [8], [15], [18], [22]. The key intuition here is that
two identical code snippets produce consistent I/O samples,
and directly comparing them would be time-efficient. One
can generate I/O samples by providing random inputs [8],
[22] to a code snippet, or by applying an SMT solver to the
symbolic constraints of the code snippet [15], [18]. One can
also use inter-procedural analysis to precisely model I/O
samples if the target code includes a function call [15], [18].

Third, the runtime behavior of a code snippet can di-
rectly express its semantics, as presented by traditional mal-
ware analysis [81]. By executing two target functions with
the same execution environment, one can directly compare
the executed instruction sequences [64] or visited CFG edges
of the target functions [66]. For comparison, one may focus
on specific behaviors observed during the execution [18],
[28], [30], [31], [35], [67], [82]: the read/write values of stack
and heap memory, return values from function calls, and in-
voked system/library function calls during the executions.
To extract such features, one may adopt fuzzing [31], [83],
or an emulation-based approach [67]. Moreover, one can
further check the call names, parameters, or call sequences
for system calls [18], [33], [35], [63], [67].

The next category is to manually annotate the high-level
semantics of a program or function. One may categorize
library functions by their high-level functionality, such as
whether the function manipulates strings or whether it han-
dles heap memory [15], [18], [61]. Annotating cryptographic
functions in a target code snippet [84] is also helpful be-
cause its complex operations hinder analyzing the symbolic
constraints or behavior of the code [63].

The fifth category is extracting features from a program
slice [85], because they can represent its data-flow semantics
in an abstract form. Specifically, one can slice a program
into a set of strands [14], [62]. Here, a strand is a series
of instructions within the same data flow, which can be
obtained from backward slicing. Next, these strands can
be canonicalized, normalized, or re-optimized for precise
comparison [14], [62]. Additionally, one may hash strands
for quick comparison [68] or extract symbolic constraints
from the strands [59]. One may also extract features from a
program dependence graph (PDG) [86], which is essentially
a combination of a data-flow graph and CFG, to represent
the convoluted semantics of the target code, including its
structural information [13].

Recovered program variables can also be semantic fea-
tures. For example, one can compare the similarity of string
literals referenced in code snippets [11], [12], [17], [23], [28],
[61], [65], [71]. One can also utilize the size of local variables,
function parameters, or the return type of functions [11],
[28], [61], [69]. One can further check registers or local
variables that store the return values of functions [18].

Recently, several approaches have been utilizing embed-
ding vectors, adopting various machine learning techniques.
After building an attributed control-flow graph (ACFG) [23],
which is a CFG containing numeric presemantic features in
its basic blocks, one can apply spectral clustering [87] to
group multiple ACFGs or popular encoding methods [88],
[89], [90] to embed them into a vector [12]. The same
technique can also be applied to PDGs [13]. Meanwhile,
recent NLP techniques, such as Word2Vec [91] or convo-
lutional neural network models [92], can be utilized for
embedding raw bytes or assembly instructions into numeric
vectors [19], [20], [21], [24], [25], [26], [27], [29]. For this
embedding, one can also consider a higher-level granu-
larity [20], [24] by applying other NLP techniques, such
as sentence embedding [93] or paragraph embedding [94].
Note that one may apply machine learning to compare
embedding vectors rather than generating them [60], [68],
and Table 1 does not mark them to use embedded vectors.

2.1.3 Key Assumptions from Past Research
During our literature study, we found that most of the ap-
proaches highly rely on semantic features extracted in (S3),
assuming that they should not change across compilers nor
target architectures. However, none of them clearly justifies
the necessity of such complex semantics-based analyses.
They focus only on the end results without considering the
precise reasoning behind their approaches.

This is indeed the key motivation for our research.
Although most existing approaches focus on complex anal-
yses, there may exist elementary features that we have over-
looked. For example, there may exist effective presemantic
features, which can beat semantic features regardless of
target architectures and compilers. It can be the case that
those known features have not been thoroughly evaluated
on the right benchmark as there has been no comprehensive
study on them.

Furthermore, existing research assumes the correctness
of the underlying binary analysis framework, such as IDA
Pro [95], which is indeed the most popular tool used, as
shown in the rightmost column of Table 2. However, CFGs
derived from those tools may be inherently wrong. They
may miss some important basic blocks, for instance, which
can directly affect the precision of BCSA features.

Indeed, both (S1) and (S2) are challenging research prob-
lems by themselves: there are abundant research efforts to
improve the precision of both analyses. For example, disas-
sembling binary code itself is an undecidable problem [96],
and writing an efficient and accurate binary lifter is signif-
icantly challenging in practice [36], [97]. Identifying func-
tions from binaries [3], [4], [96], [98], [99], [100], [101] and
recovering control-flow edges [102] for indirect branches are
still active research fields. All these observations lead us to
research questions in §2.3.

2.2 Benchmarks Used in Prior Works
It is imperative to use the right benchmark to evaluate
a BCSA technique. Therefore, we studied the benchmarks
used in the past literature, as shown in Table 2. However,
during the study, we found that it is radically difficult to
properly evaluate a new BCSA technique using the previous
benchmarks.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 6

TABLE 2: Summary of the datasets used in previous studies.

#Binaries∗ Architecture Optimization Compiler† Extra Info.

Year Tool [Paper] Pa
ck

ag
es

Fi
rm

w
ar

e

x8
6

x6
4

ar
m

aa
rc

h6
4

m
ip

s
m

ip
s6

4
m

ip
se

b
m

ip
s6

4e
b

O
0

O
1

O
2

O
3

O
s

G
C

C
3

G
C

C
4

G
C

C
5

G
C

C
6

G
C

C
7

G
C

C
8

C
la

ng
3

C
la

ng
4

C
la

ng
5

C
la

ng
6

C
la

ng
7

m
is

c.
To

ta
l

#

N
oi

nl
in

e
PI

E
LT

O
O

bf
us

.

C
od

e
D

at
as

et
ID

A

2014

TEDEM [10] 14 · # · #
Tracy [57] (115) · △ △ · # · #

CoP [7] (214) · △ · · · · · · · # # # # # · 1 · · · · · · · · · 1 2 · · · # · · #
LoPD [8] 48 · # · · · · · · · # # # # # · 1 · · · · · · · · · 1 2 · · # # · · ·

BLEX [30] 1,140 · · # · · · · · · # # # # · · 1 · · · · 1 · · · · 1 3 · · · · · · #
BinClone [58] 90 · △ · # · #

2015 Multi-k-MH [22] 60 6 # · # · # · · · # # # # · · 2 · · · · 1 · · · · · 3 · · · · · · #

2016

discovRE [11] 593 3 # · # · # · · · # # # # # · 1 · · · · 1 · · · · 2 4 # · · · · H# #
Genius [23] (7,848) 8,128 # · # · # · · · # # # # · · 2 · · · · 1 · · · · · 3 · · · · · · #

Esh [59] (833) · · # · · · · · · · · · · · · 3 · · · · 2 · · · · 2 7 · · · · # # #
BinGo [15] (5,143) · # # # · · · · · # # # # · · 3 · · · · 1 · · · · 1 5 · · · · · · #

MockingBird [33] 80 · # · # · # · · · # · # # · · 1 · · · · 1 · · · · · 2 · · · · · · #
Kam1n0 [32] 96 · # # · # · #
BinDNN [60] (2,072) · # # # · · · · · # # # # · · 1 · · · · · · · · · 1 2 · · · · · · #

2017

BinSign [61] (31) · △ · 2 2 · · · # · · #
Xmatch [16] 72 1 # · · · # · · · · · · · · · 2 · · · · 1 · · · · · 3 # · · · · · #
Gemini [12] 18,269 8,128 # · # · # · · · # # # # · · · 1 · · · · · · · · · 1 · · · · # · #

GitZ [62] 44 · · # · # · · · · # # # # # · 3 · · · · 2 1 · · · 2 8 · · · · · · ·
BinSim [63] 1,062 · # · # · · #

BinSequence [34] (1,718) · △ · #
IMF-sim [31] 1,140 · · # · · · · · · # · # # · · 1 · · · · 1 · · · · 1 3 · · · # · · ·

CACompare [35] 72 · # · # · # · · · # · # # · · 1 · · · · 1 · · · · · 2 · · · · · · #
ASE17 [64] 55 · # # · · · · · · # · # # · · 1 · · · · 1 · · · · · 2 · · · # · · ·

2018

BinArm [17] · 2,628 · · △ · #
SANER18 [65] 7 · # # · · · · · · · · · · · · 1 1 1 · · 1 · · · · 1 5 · · · · · · #

BinGo-E [18] (5,145) · # # # · · · · · # # # # · · 3 · · · · 1 · · · · 1 5 · · · · · · #
WSB [66] (173) · △ · · · · · · · · # # # · · 1 · · · · 1 · · · · · 2 · · · # · · ·

BinMatch [67] (82) · # · · · · · · · # · # # · · 1 · · · · 1 · · · · · 2 · · · # · · #
MASES18 [25] 47 · △ · # · · ·

Zeek [68] (20,680) · · # · # · · · · # # # # # · 3 · · · · 4 1 · · · 2 10 · · · · · · ·
FirmUp [14] · 2,000 △ · △ · △ · #

αDiff [19] (69,989) 2 # # # · · · · · # # # # · · 2 1 · · · 2 · · · · · 5 · · · · H# H# #
VulSeeker [13] (10,512) 4,643 # # # # # # · · # # # # · · 1 1 · · · · · · · · · 2 · · · · # · #

2019

InnerEye [24] (844) · · # # · · · · · · # # # · · · · · · · · · · 1 · · 1 · · · · H# H# ·
Asm2Vec [20] 68 · · # · · · · · · # # # # · · 1 1 · · · 2 · · · · 2 6 · · · # # · #

SAFE [21] (5,001) · · # # · · · · · # # # # · 1 3 1 1 1 · 2 1 1 1 · · 12 · · · · # H# #
BAR19i [26] (804) · · # # · · · · · · # # # · · · · · · · · · · 1 · · 1 · · · · # · ·

BAR19ii [29] (11,244) · # # # · · · · · # # # # · 1 3 1 · · · 2 1 1 · · 2 11 · · · · · · #
FuncNet [69] (180) · # · # · # · · · # # # # # · · · 1 · · · · · · · · 1 · · · · · · #

2020
DeepBinDiff [27] (2,206) · · △ · · · · · · # # # # · · 1 · · · · · · · · · · 1 · · · · # # #

ImOpt [70] 18 · · # · · · · · · # · # # · · · 1 · · · · · · · · · 1 · · · # · · ·
ACCESS20 [53] 12,000 · △ △ ·
Patchecko [28] 2,108 2 # # # # · · · · # # # # # · · · · · · · · · · · · · · · · · · · #

BINKIT ⋆ 243,128 · # # # # # # # # # # # # # · 1 1 1 1 1 · 1 1 1 1 · 9 # # # # # # #
∗ We only mark items that are stated explicitly in the paper. Due to the lack of details about firmware images, we were not able to mark optimization

options or compilers used to create them. For papers that do not explicitly state the number of binaries in their dataset, we estimated the number
and marked it with parentheses.

† This table focuses on two major compilers: GCC and Clang, as other compilers only support a limited number of architectures.
△ We infer the target architectures of the dataset as they are not stated explicitly in the paper.
H# This indicates that only a portion of the code and dataset is available. For example, discovRE [11] makes available only their firmware images,

and αDiff [19] opens transformed function images but not the actual dataset.

First, we were not able to find a single pair of papers
that use the same benchmark. Some of them share packages
such as GNU coreutils [15], [30], [31], but the exact
binaries, versions, and compiler options are not the same.
Although there is no known standard for evaluating BCSA,
it is surprising to observe that none of the papers use
the same dataset. We believe this is partly because of the
difficulty in preparing the same benchmark. For example,
even if we can download the same version of the source
code used in a paper, it is extraordinarily difficult to cross-
compile the program for various target architectures with
varying compiler options; it requires significant effort to set
up the environment. However, only two out of 43 papers we
studied fully open their dataset. Even in that case, it is hard to
rebuild or extend the benchmark because of the absence of
a public compilation script for the benchmark.

Second, the number of binaries used in each paper is
limited and may not be enough for analytics. The #Binaries
column of Table 2 summarizes the number of program
binaries obtained from two different sources: application
packages and firmware images. Since a single package

can contain multiple binaries, we manually extracted the
packages used in each paper and counted the number of
binaries in each package. We counted only the binaries after
a successful compilation, such that the object files that were
generated during the compilation process were not counted.
If a paper does not explicitly mention package versions, we
used the most recent package versions at the time of writing
and marked them with parentheses. Note that only 6 out of
43 papers have more than 10,000 binaries, and none reaches
100,000 binaries. Firmware may include numerous binaries,
but it cannot be directly used for BCSA because one cannot
generate the ground truth without having the source code.

Finally, previous benchmarks only cover a few compil-
ers, compiler options, and target architectures. Some papers
do not even describe their tested compiler options or pack-
age versions. The Compiler column of the table presents the
number of minor versions used for each major version of the
compilers. Notably, all the benchmarks except one consider
less than five different major compiler versions. The Extra
column of the table shows the use of extra compiler options
for each benchmark. Only a few consider function inlining

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 7

and Link-Time Optimization (LTO). None of them deal with
the Position Independent Executable (PIE) option, although,
currently, it is widely used [103].

All these observations lead us to the research questions
outlined in the next subsection (§2.3) and eventually moti-
vate us to create our own benchmark that we call BINKIT,
which is shown in the last row of Table 2.

2.3 Research Problems and Questions
We now summarize several key problems observed from
the previous literature and introduce research questions
derived from these problems. First, none of the papers
uses the same benchmark for their evaluation, and the way
they evaluate their techniques significantly differs. Second,
only a few of the studies release their source code and
data, which makes it radically difficult to reproduce or
improve upon existing works. Furthermore, most papers
use manually chosen ground truth data for their evaluation,
which are easily error-prone. Finally, current state-of-the-art
approaches in BCSA focus on extracting semantic features
with complex analysis techniques (from §2.1.1 and §2.1.2).
These observations naturally lead us to the below research
questions. Note that some of the questions are indeed open-
ended, and we only address them in part.
RQ1. How should we establish a large-scale benchmark
and ground truth data?

One may build benchmarks by manually compiling ap-
plication source code. However, there are so many differ-
ent compiler versions, optimization levels, and options to
consider when building binaries. Therefore, it is desirable
to automate this process to build a large-scale benchmark
for BCSA. It should be noted that many of the existing
studies have also attempted to build ground truth from
source code. However, the number of binaries and compiler
options used in those studies is limited and is not enough
for data-driven research. Furthermore, those studies release
neither their source code nor dataset (§2.2). On the contrary,
we present a script that can automatically build large-scale
ground truth data from a given set of source packages with
clear descriptions (§3).
RQ2. Is the effectiveness of presemantic features limited to
the target architectures and compiler options used?

We note that most previous studies assume that prese-
mantic features are significantly less effective than semantic
features, as they can largely vary depending on the under-
lying architectures and compiler optimizations used. For ex-
ample, compilers may perform target-specific optimization
techniques for a specific architecture. Indeed, 36 out of the 43
papers (≈ 84%) we studied focus on new semantic features
in their analysis, as shown in Table 1. To determine whether
this assumption is valid, we investigate it through a series
of rigorous experimental studies. Although byte-level infor-
mation significantly varies depending on the target and the
optimization techniques, we found that some presemantic
features, such as structural information obtained from CFGs,
are broadly similar across different binaries of the same
program. Additionally, we demonstrated that utilizing such
presemantic features without a complex semantic analysis
can achieve an accuracy that is comparable to that of a recent
deep learning-based approach with a semantic analysis (§5).

RQ3. Can debugging information help BCSA achieve a high
accuracy rate?

We are not aware of any quantitative study on how much
debugging information affects the accuracy of BCSA. Most
prior works simply assume that debugging information is
not available, but how much does it help? How would
decompilation techniques affect the accuracy of BCSA? To
answer this question, we extracted a list of function types
from our benchmark and used them to perform BCSA
on our dataset. Surprisingly, we were able to achieve a
higher accuracy rate than any other existing works on BCSA
without using any sophisticated method (§6).
RQ4. Can we benefit from analyzing failure cases of BCSA?

Most existing works do not analyze their failure cases as
they rely on uninterpretable machine learning techniques.
However, our goal is to use a simple and interpretable
model to learn from failure and gain insights for future
research. Therefore, we manually examined failure cases
using our interpretable method and observed three common
causes for failure, which have been mostly overlooked by
the previous literature. First, COTS binary analysis tools
indeed return false results. Second, different compiler back-
ends for the same architecture can be substantially different
from each other. Third, there are architecture-specific code
snippets for the same function. We believe that all these ob-
servations help in setting directions for future studies (§7).
Analysis Scope. In this paper, we focus on function-level
similarity analyses because functions are a fundamental unit
of binary analysis, and function-level BCSA is widely used
in previous literature [11], [16], [19], [21], [24], [30], [31],
[32]. We believe one can easily extend our work to support
whole-binary-level similarity analyses as in the previous
papers [7], [8].

3 ESTABLISHING LARGE-SCALE BENCHMARK
AND GROUND TRUTH FOR BCSA (RQ1)
Building a large-scale benchmark for BCSA and establishing
its ground truth is challenging. One potential approach for
generating the ground truth data is to manually identify
similar functions from existing binaries or firmware im-
ages [10], [57], [59]. However, this requires domain expertise
and is often error-prone and time-consuming.

Another approach for obtaining the ground truth is to
compile binaries from existing source code with varying
compiler options and target architectures [13], [15], [16], [23].
If we compile multiple binaries (with different compiler op-
tions) from the same source code, one can determine which
function corresponds to which source lines. Unfortunately,
most existing approaches do not open their benchmarks nor
the compilation scripts used to produce them (Table 2).

Therefore, we present BINKIT, which is a comprehensive
benchmark for BCSA, along with automated compilation
scripts that help reproduce and extend it for various re-
search purposes. The rest of this section details BINKIT and
discusses how we establish the ground truth (RQ1).

3.1 BINKIT: Large-Scale BCSA Benchmark
BINKIT is a comprehensive BCSA benchmark that com-
prises 243,128 binaries compiled from 51 packages of source

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 8

code with 1,352 distinct combinations of compilers, compi-
lation options, and target architectures. Therefore, BINKIT
covers most of the benchmarks used in existing approaches,
as shown in Table 2. BINKIT includes binaries compiled for
8 different architectures. For example, we use both little-
and big-endian binaries for MIPS to investigate the effect of
endianness. It uses 9 different versions of compilers: GCC
v{4.9.4, 5.5.0, 6.4.0, 7.3.0, 8.2.0} and Clang v{4.0, 5.0, 6.0,
7.0}. We also consider 5 optimization levels from O0 to O3 as
well as Os, which is the code size optimization. Finally, we
take PIE, LTO, and obfuscation options into account, which
are less explored in BCSA.

We select GNU software packages [104] as our compila-
tion target because of their popularity and accessibility: they
are real applications that are widely used on Linux systems,
and their source code is publicly available. We successfully
compiled 51 GNU packages for all our target architectures
and compiler options.

To better support targeted comparisons, we divide
BINKIT into six datasets: NORMAL, SIZEOPT, NOINLINE,
PIE, LTO, and OBFUSCATION. The summary of each dataset
is shown in Table 3. Each dataset contains binaries obtained
by compiling the GNU packages with different combina-
tions of compiler options and targets. There is no intersection
among the datasets.

NORMAL includes binaries compiled for 8 different ar-
chitectures with different compilers and optimization levels.
We did not use other extra options such as PIE, LTO, and
no-inline for this dataset.

SIZEOPT is the same as NORMAL except that it uses only
the Os optimization option instead of O0–O3.

Similarly, PIE, NOINLINE, LTO, and OBFUSCATION are
no different from NORMAL except that they are generated
by using an additional flag to enable PIE, to disable inline
optimization, to enable LTO, and to enable compile-time
obfuscation, respectively.

PIE makes memory references in binary relative to sup-
port ASLR. On some architectures, e.g., x86, compilers inject
additional code snippets to achieve relative addressing. As
a result, the compiled output can differ severely. Although
PIE became the default on most Linux systems [103], it has
not been well studied for BCSA. Note we were not able
to compile all 51 packages with the PIE option enabled.
Therefore, we have fewer binaries in PIE than NORMAL.

Function inlining embeds callee functions into the body
of the caller. This can make presemantic features largely
vary. Therefore, we investigate the effect of function inlining
on BCSA by explicitly turning off the inline optimization
with the fno-inline option.

LTO is an optimization technique that operates at link
time. It removes unnecessary code blocks, thereby reducing
the number of presemantic features. However, it has also
been less studied in BCSA. We were only able to successfully
compile 29 packages when the LTO option was enabled.

Finally, the OBFUSCATION dataset uses Obfuscator-
LLVM [105] to obfuscate the target binaries. We chose
Obfuscator-LLVM among various other tools previously
used [105], [106], [107], [108], [109], [110] because it is the
most commonly used [20], [31], [61], [67], [70], and we
can directly compare the effect of obfuscation using the
vanilla LLVM compiler. We use Obfuscator-LLVM’s latest

TABLE 3: Summary of BINKIT.
Dataset # of # of # of # of # of # of Orig. # of Final
Name Pkgs Archs Optis Comps Binaries Functions Functions∗

NORMAL 51 8 4 9 67,680 34,355,824 8,708,459
SIZEOPT 51 8 1† 9 16,920 8,350,442 2,060,625
PIE 46† 8 4 9 36,000 23,090,676 7,766,235
NOINLINE 51 8 4 9 67,680 38,617,186 10,291,001
LTO 29† 8 4 9 24,768 12,279,982 3,375,308
OBFUSCATION 51 8 4 4‡ 30,080 15,809,489 4,054,694

Total 51 1,352 options 243,128 132,503,599 36,256,322

∗ The target functions are selected in the manner described in §3.2.
† The number of packages and compiler options varies because some packages

can be compiled only with a specific set of compile options.
‡ We count each of the four obfuscation options as a distinct compiler (§3.1).

version with four obfuscation options: instruction substitu-
tion (SUB), bogus control flow (BCF), control flow flattening
(FLA), and a combination of all the options. We regard each
option as a distinct compiler, as shown in the Comp column
of Table 3. One can obfuscate a single binary multiple times.
However, we only applied it once. This is because obfus-
cating a binary multiple times could emit a significantly
large binary, which becomes time-consuming for IDA Pro
to preprocess. For example, when we obfuscate a2ps twice
with all three options, the compiled binary reaches over 30
MB, which is 30 times larger than the normal one.

The number of packages and that of compiler options
used in compiling each dataset differ because some pack-
ages can be compiled only with a specific set of compile
options and targets. Some packages fail to compile because
they have architecture-specific code, such as inline assem-
blies, or because they use compiler-specific grammars. For
example, Clang does not support both the LTO option and
the Os option to be turned on. There are also cases where
packages have conflicting dependencies. We also excluded
the ones that did not compile within 30 min because some
packages require a considerable amount of time to compile.
For instance, smalltalk took more than 10 h to compile
with the obfuscation option enabled.

To summarize, BINKIT contains 243,128 binaries and
36,256,322 functions in total, which is indeed many orders of
magnitude larger than the other benchmarks that appear in
the previous literature. The Source column of Table 2 shows
the difference clearly. BINKIT does not include firmware im-
ages because our goal is to automatically build a benchmark
with clear ground truth. One may extend our benchmark
with firmware images. However, it would take significant
manual effort to identify their ground truth. For additional
details regarding each package, please refer to Table 12 in
the Appendix.

Our benchmark and compilation scripts are available
on GitHub. Our compilation environment is based on
Crosstool-NG [111], GNU Autoconf [112], and Linux Paral-
lels [113]. Through this environment, we compiled the entire
datasets of BINKIT in approximately 30 h on our server
machine with 144 Intel Xeon E7-8867v4 cores.

3.2 Building Ground Truth

Next, we establish the ground truth for our dataset. We first
define the criteria for determining the equivalence of two
functions. In particular, we check whether two functions
with the same name originated from the same source files
and have the same line numbers. Additionally, we verify

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 9

that both functions come from the same package and have
the same name in their binaries to ensure their equivalence.

Based on these criteria, we constructed the ground truth
by performing the following steps. First, we compiled all the
binaries with debugging information using the -g option.
We then leveraged IDA Pro [95] to identify functions in the
compiled binaries. Next, we labeled each identified function
with its name, package name, binary name, as well as the
name of the corresponding source file and line numbers. To
achieve this, we wrote a script that parses the debugging
information from each binary.

Using this information, we then sanitize our dataset
to avoid having incorrect or biased results. Among the
identified functions, we selected only the ones in the code
(.text) segments, as functions in other segments may not
include valid binary code. For example, we disregarded
functions in the Procedure Linkage Table (.plt) sections be-
cause these functions are wrappers to call external functions
and do not include actual function bodies. In our dataset,
we filtered out 40% of the identified functions in this step.

We also disregarded approximately 4% of the functions
that are generated by the compiler, but not by the applica-
tion developers. We can easily identify such compiler intrin-
sic functions by checking the corresponding source files and
line numbers. For example, GCC utilizes intrinsic functions
such as __udivdi3 in libgcc2.c or __aeabi_uldivmod
in bpabi.S to produce highly optimized code.

Additionally, we removed duplicate functions within the
same project/package. Two different binaries often share
the same source code, especially when they are in the
same project/package. For example, the GNU coreutils
package contains 105 different executables that share 80% of
the functions in common. We removed duplicate functions
within each package by checking the source file names and
their line numbers. Moreover, compilers can also generate
multiple copies of the same function within a single binary
due to optimization. These functions share the same source
code but have a difference in their binary forms. For exam-
ple, some parts of the binary code are removed or reordered
for optimization purposes. As these functions share a large
portion of the code, considering all of them would produce
a biased result. To avoid this, we selected only one copy for
each of the functions in our experiments. This step filtered
out approximately 54% of the remaining functions. The last
column of Table 3 reports the final counting results, which
is the number of unique functions.

By performing all the above steps, we can automatically
build large-scale ground truth data. The total time spent
building the ground truth of all our datasets was 13,300
seconds. By leveraging this ground truth data, we further
investigate the remaining research questions (i.e., RQ2–RQ4)
in the following sections. To encourage further research, we
have released all our datasets and source code.

4 BUILDING AN INTERPRETABLE MODEL

Previous BCSA techniques focused on achieving a higher
accuracy by leveraging recent advances in deep learning
techniques [12], [13], [19], [25]. This often requires build-
ing a complicated model, which is not straightforward to
understand and hinders researchers from reasoning about

TABLE 4: Summary of numeric presemantic features used
in TIKNIB.

Category Features Count

CFG

of basic blocks, edges, loops, SCCs, and back edges

41

of all, arith, data transfer, cmp, and logic instrs.
of shift, bit-manipulating, float, misc instrs.
of arith + shift, and data transfer + misc instrs.
of all/unconditional/conditional control transfer instrs.
Avg. # of edges per a basic block
Avg./Sum of basic block, loop, and SCC sizes
Avg. # of all, arith, data transfer, cmp, and logic instrs.
Avg. # of shift, bit-manipulating, float, misc instrs.
Avg. # of arith + shift, and data transfer + misc instrs.
Avg. # of all/unconditional/conditional control transfer instrs.

CG # of callers, callees, imported callees 6# of incoming/outgoing/imported calls

Total 47

the BCSA results and further answering the fundamental
questions regarding BCSA. Therefore, we design an inter-
pretable model for BCSA to answer the research questions
and implement TIKNIB, which is a BCSA tool that employs
the model. This section illustrates how we obtain such a
model and how we set up our experimental environment.

4.1 TIKNIB Overview
At a high level, TIKNIB leverages a set of presemantic
features widely used in the previous literature to reassess
the effectiveness of presemantic features (RQ2). It evaluates
each feature in two input functions, based on our similarity
scoring metric (§4.3), which directly measures the difference
between each feature value. In other words, it captures how
much each feature differs across different compile options.

Note TIKNIB is intentionally designed to be simple so
that we can answer the research questions presented in §2.3.
Despite the simplicity of our approach, TIKNIB still pro-
duces a high accuracy rate that is comparable to state-of-
the-art tools (§5.2). We are not arguing here that TIKNIB is
the best BCSA algorithm.

4.2 Features Used in TIKNIB

Recall from RQ2, one of our goals is to reconsider the
capability of presemantic features. Therefore, we focus on
choosing various presemantic features used in the previous
BCSA literature instead of inventing novel ones.

However, creating a comprehensive feature set is not
straightforward because of the following two reasons. First,
there are numerous existing features that are similar to
one another, as discussed in §2. Second, some features
require domain-specific knowledge, which is not publicly
available. For example, several existing papers [11], [12],
[13], [17], [18], [23], [61], [65] categorize instructions into
semantic groups. However, grouping instructions is largely
a subjective task, and there is no known standard for it. Fur-
thermore, most existing works do not make their grouping
algorithms public.

We address these challenges by (1) manually extracting
representative presemantic features and (2) open-sourcing
our feature extraction implementation. Specifically, we focus
on numeric presemantic features. Because these features are
represented as numbers, the relationship among their values
across different compile options can be easily observed.

Table 4 summarizes the selected features. Our feature
set consists of CFG- and CG-level numeric features as they

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 10

can effectively reveal structural changes in the target code.
In particular, we utilize features related to basic blocks,
CFG edges, natural loops, and strongly connected compo-
nents (SCCs) from CFGs, by leveraging NetworkX [114].
We also categorize instructions into several semantic groups
based on our careful judgment by referring to the reference
manuals [115], [116], [117] and leveraging Capstone [118]’s
internal grouping. Next, we count the number of instruc-
tions in each semantic group per each function (i.e., CFG).
Additionally, we take six features from CGs. The number of
callers and callees represents a unique number of outgoing
and incoming edges from CGs, respectively.

To extract these features, we conducted the following
steps. First, we pre-processed the binaries in BINKIT with
IDA Pro [95]. We then generated the ground truth of these
binaries as we described in §3.2. For those functions of
which we have the ground truth, we extracted the afore-
mentioned features. Table 5 shows the time spent for each
of these steps. The IDA pre-processing took most of the time
as IDA performs various internal analyses. Meanwhile, the
feature extraction took much less time as it merely operates
on the precomputed results from the pre-processing step.

4.3 Scoring Metric

Our scoring metric is based on the computation of the
relative difference [119] between feature values. Given two
functions A and B, let us denote a value of feature f for
each function as Af and Bf , respectively. Recall that any
feature in TIKNIB can be represented as a number. We can
compute the relative difference δ between the two feature
values as follows:

δ(Af , Bf) =
|Af − Bf |

|max(Af , Bf)|
(1)

Let us suppose we have N distinct features
(f1, f2, · · · , fN) in our feature set. We can then define our
similarity score s between two functions A and B by taking
the average of relative differences for all the features as
follows:

s(A,B) = 1 −
(
δ(Af1

, Bf1
) + · · · + δ(AfN

, BfN
)
)

N
(2)

Although each numeric feature can have a different
range of values, TIKNIB can effectively handle them using
relative differences by representing the difference of each
feature with a value between 0 and 1. Therefore, the score s
is always within the range of 0 to 1.

Furthermore, we can intuitively understand and inter-
pret the BCSA results using our scoring metric. For example,
suppose there are two functions A and B derived from the
same source code with and without compiler option X ,
respectively. If the relative difference of the feature value
f between the two functions is small, it implies that f is a
robust feature against compiler option X .

In this paper, we focus only on simple relative differ-
ences, rather than exploring complex relationships among
the features for interpretability. However, we believe that
our approach could be a stepping-stone toward fabricating
more improved interpretable models to understand such
complex relationships.

TABLE 5: Breakdown of the feature extracting time for
BINKIT.

Dataset
Name

IDA
Pre-processing

(s)

Ground Truth
Building

(s)

Feature
Extraction

(s)

Avg. Feature†
Extraction

(ms)

NORMAL 14,968.42 3,380.01 661.81 0.08
SIZEOPT 2,171.70 353.13 649.57 0.32
PIE 13,893.92 2,601.74 133.60 0.02
NOINLINE 14,780.06 3,883.88 579.82 0.06
LTO 5,263.97 1,314.94 392.48 0.12
OBFUSCATION 97,723.47 1,766.60 4,189.44 1.03

† The average time spent for extracting features from a function, which
is computed by dividing the total time (the fourth column of this table)
by the number of functions (the last column of Table 3).

4.4 Feature Selection

Based on our scoring metric, we perform lightweight pre-
processing to select useful features for BCSA as some
features may not help in making a distinction between
functions. To measure the quality of a given feature set, we
compute the area under the receiver operating characteristic
(ROC) curve (i.e., the ROC AUC) of generated models.

Suppose we are given a dataset in BINKIT, which is
generated from source code containing N unique functions.
In total, we have a maximum of N · M functions in our
dataset, where M is the number of combinations of compiler
options used to generate the dataset. The actual number of
functions can be less than N · M due to function inlining.
For each unique function λ, we randomly select two other
functions with the following conditions. (1) A true positive
(TP) function, λTP, is generated from the same source code
as in λ, with different compiler options, and (2) a true
negative (TN) function, λTN, is generated from source code
that is different from the one used to generate λ, with the
same compiler options as for λTP. We generate such pairs
for each unique function, thereby acquiring around 2 · N
function pairs. We then compute the similarity scores for
the functions in each pair and their AUC.

We note that the same methodology has been used in
prior works [12], [13]. We chose the method as it allows
us to efficiently analyze the tendency over a large-scale
dataset. One may also consider top-k [12], [13], [14], [20] or
precision@k [12], [20] as an evaluation metric, but this ap-
proach has too much computational overhead: O((N ·M)2)
operations.

Unfortunately, there is no efficient algorithm for select-
ing an optimal feature subset to use; it is indeed a well-
known NP-hard problem [120]. Therefore, we leverage a
greedy feature selection algorithm [121]. Starting from an
empty set F, we determine whether we can add a feature
to F to increase its AUC. For every possible feature, we
make a union with F and compute the corresponding AUC.
We then select one that maximizes the AUC and update
F to include the selected feature. We repeat this process
until the AUC does not increase further by adding a new
feature. Although our approach does not guarantee finding
an optimal solution, it still provides empirically meaningful
results, as we describe in the following sections.

4.5 Experimental Setup

For all experiments in this study, we perform 10-fold cross-
validation on each test. When we split a test dataset, we
ensure functions that share the same source code (i.e., source
file name and line number) are either in a training or testing

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 11

set, but not in both. For each fold, during the learning
phase, i.e., the feature selection phase, we select up to 200K
functions from a training set and conduct feature selection,
as training millions of functions would take a significant
amount of time. Limiting the number of functions for train-
ing may degrade the final results. However, when we tested
the number of functions from 100K to 1000K, the results
remained almost consistent. In the validation phase, we test
all the functions in the testing set without any sampling.
Thus, after 10-fold validation, all the functions in the target
dataset are tested at least once.

We ran all our experiments on a server equipped with
four Intel Xeon E7-8867v4 2.40 GHz CPUs (total 144 cores),
896 GB DDR4 RAM, and 8 TB SSD. We set up Ubuntu
18.04.5 LTS with IDA Pro v6.95 [95] on the server. For feature
selection and similarity comparison, we utilized Python
scikit-learn [122], SciPy [123], and NumPy [124].

5 PRESEMANTIC FEATURE ANALYSIS (RQ2)
We now present our experimental results using TIKNIB on
the presemantic features (§4.2) to answer RQ2 (§2.3). With
our comprehensive analysis of these features, we obtained
several useful insights for future research. In this section, we
discuss our findings and lessons learned.

5.1 Analysis Result
To analyze the impact of various compiler options and target
architectures on BCSA, we conducted a total of 72 tests using
TIKNIB. We conducted the tests on our benchmark, BINKIT,
with the ground truth that we built in §3. Table 6 describes
the experimental results where each column corresponds to
a test we performed. Note that we present only 26 out of 72
tests because of the space limit. Unless otherwise specified,
all the tests were performed on the NORMAL dataset. As
described in §4.4, we prepared 10-fold sets for each test.
We divided the tests into seven groups according to their
purposes, as shown in the top row of the table. For example,
the Arch group contains a set of tests to evaluate each feature
against varying target architectures.

For each test, we select function pairs for training and
testing as described in §4.4. That is, for a function λ, we
select its corresponding functions (i.e., λTP and λTN). There-
fore, N functions produce 2·N functions pairs. The first row
(1) of Table 6 shows the number of function pairs for each
test. When selecting these pairs, we deliberately choose the
target options based on the goal of each test. For instance,
we test the influence of varying the target architecture from
x86 to ARM (x86 vs. ARM column of Table 6). For each
function λ in the x86 binaries of our dataset, we select both
λTP and λTN from the ARM binaries compiled with the same
compiler option as in λ. In other words, we fix all the other
options, except for the target architecture for choosing λTP

and λTN so we can focus on our testing goal. The same rule
applies to other columns. For the Rand. columns, we alter
all the compiler options in the group randomly to generate
function pairs.

The second row (2) of Table 6 presents the time spent
for training and testing in each test, which excludes the time
for loading the function data on the memory. The average
time spent for a single function was less than 1 ms.

Each cell in the third row (3) of Table 6 represents the
average of δ(λf , λ

TN
f) − δ(λf , λ

TP
f) for feature f , which we

call the TP-TN gap of f . This TP-TN gap measures the simi-
larity between λTP and λ, as well as the difference between
λTN and λ, in terms of the target feature. Thus, when the gap
of a feature is larger, its discriminative capability for BCSA
is higher. As we conduct 10-fold validation for each test, we
highlight the cells with gray when the corresponding feature
is chosen in all ten trials. Such features show relatively
higher TP-TN gaps than the others do in each test. We also
present the average TP-TN gaps in the fourth row (4) of the
table.

The average number of the selected features in each test
is shown in the fifth row (5) of Table 6. A few presemantic
features could achieve high AUCs and average precisions
(APs), as shown in the sixth row (6) and seventh row
(7) of the same table, respectively. We now summarize our
observations as follows.

5.1.1 Optimization is largely influential
Many researchers have focused on designing a model for
cross-architecture BCSA [11], [15], [18], [22], [33]. However,
our experimental results show that architecture may not
be the most critical factor for BCSA. Instead, optimization
level was the most influential factor in terms of the relative
difference between presemantic features. In particular, we
measured the average TP-TN gap of all the presemantic
features for each test (Avg. of TP-TN Gap row of the table)
and found that the average gap of the O0 vs. O3 test (0.41)
is less than that of the x86 vs. ARM test (0.46) and the
x86 vs. MIPS test (0.42). Furthermore, the optimization level
random test (Rand. column of the Opt Level group) shows the
lowest AUC (0.96) compared to that of the architecture and
compiler group (0.98). These results confirm that compilers
can produce largely distinct binaries depending on the
optimization techniques used; hence, the variation among
the binaries due to the optimization is considerably greater
than that due to the target architecture on our dataset.

5.1.2 Compiler version has a small impact
Approximately one-third of the previous benchmarks
shown in Table 2 employ multiple versions of the same
compiler. However, we found that even the major versions
of the same compiler produce similar binaries. In other
words, compiler versions do not heavily affect presemantic
features. Although Table 6 does not include all the tests we
performed because of the space constraints, it is apparent
from the Compiler column that the two tests between two
different versions of the same compiler, i.e., GCC v4 vs. GCC
v8 and Clang v4 vs. Clang v7, have much higher TP-TN
gaps (0.52) than other tests, and their AUCs are close to 1.0.

5.1.3 GCC and Clang have diverse characteristics
Conversely, the GCC vs. Clang test resulted in the lowest
TP-TN gap (0.44) and AUC (0.97) among the tests in the
Compiler group. This can be because each compiler employs
a different back-end, thereby producing different binaries.
Another potential problem is that the techniques inside each
optimization level can vary depending on the compiler. We
detail this in §7.2.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 12

TABLE 6: In-depth analysis results of presemantic features obtained by running TIKNIB on BINKIT.
In

de
x

Description
Opt Level Compiler Arch vs. SizeOpt† vs. Extra† vs. Obfus.† Bad‡

Rand.
O0
vs.
O3

O2
vs.
O3

Rand.
GCC v4

vs.
GCC v8

Clang v4
vs.

Clang v7

GCC
vs.

Clang
Rand.

x86
vs.

ARM
x86
vs.

MIPS
ARM

vs.
MIPS

32
vs.
64

LE
vs.
BE

Rand.
O0
vs.
Os

O1
vs.
Os

O3
vs.
Os

PIE NoInline LTO BCF FLA SUB All Norm.
Norm.

vs.
Obfus.

†

1 # of Train Pairs (106) 0.40 0.13 0.19 0.36 0.19 0.19 0.19 0.40 0.17 0.16 0.17 0.18 0.20 0.39 0.14 0.17 0.18 6.04↑ 0.17 0.19 0.19 0.19 0.20 0.18 3.63↑4.56↑

of Test Pairs (106) 1.58 0.26 0.33 1.43 0.16 0.17 0.75 1.57 0.17 0.16 0.17 0.71 0.40 1.55 0.29 0.34 0.32 0.24 1.09 1.37 0.17 0.17 0.18 0.17 0.40↑0.51↑

2 Train Time (sec)∗ 60.0 24.6 25.3 77.3 28.9 24.6 35.7 76.9 29.0 28.8 28.0 19.0 22.4 48.2 20.8 24.4 15.6 10.5 12.6 42.0 25.0 28.8 44.1 17.6 5.9 5.4
Test Time (sec)∗ 59.1 23.3 23.8 49.7 12.0 11.8 40.9 54.4 12.3 12.5 12.0 39.9 22.8 52.2 24.8 23.2 22.6 32.0 62.5 60.7 11.9 11.3 10.6 11.2 1.6 1.6

3

T
P-

T
N

G
ap

of
Fe

at
ur

es

CFG # of edges per BB 0.42 0.37 0.45 0.42 0.45 0.45 0.41 0.44 0.43 0.41 0.41 0.44 0.46 0.43 0.40 0.43 0.44 0.38 0.48 0.47 0.31 0.37 0.46 0.29 0.38 0.22
CFG # of edges 0.57 0.50 0.68 0.58 0.68 0.69 0.57 0.64 0.67 0.62 0.63 0.67 0.72 0.64 0.54 0.63 0.60 0.63 0.66 0.72 0.40 0.37 0.72 0.31 0.52 0.25
CFG # of loops 0.45 0.46 0.49 0.45 0.50 0.47 0.46 0.48 0.50 0.49 0.50 0.50 0.51 0.49 0.48 0.49 0.45 0.51 0.45 0.51 0.46 0.36 0.50 0.29 0.44 0.22
CFG # of inter loops 0.46 0.47 0.49 0.46 0.50 0.48 0.47 0.48 0.50 0.49 0.50 0.50 0.50 0.49 0.48 0.49 0.45 0.51 0.45 0.50 0.46 0.38 0.50 0.32 0.45 0.27
CG # of callees 0.57 0.52 0.63 0.58 0.64 0.63 0.57 0.61 0.64 0.57 0.58 0.60 0.64 0.59 0.54 0.62 0.60 0.56 0.61 0.62 0.61 0.61 0.64 0.60 0.52 0.56
CG # of callers 0.55 0.55 0.59 0.56 0.60 0.58 0.54 0.58 0.58 0.51 0.53 0.56 0.60 0.57 0.58 0.60 0.58 0.54 0.58 0.57 0.56 0.56 0.58 0.55 0.54 0.54
CG # of imported callees 0.55 0.56 0.63 0.58 0.62 0.59 0.55 0.59 0.63 0.49 0.50 0.59 0.57 0.57 0.58 0.61 0.58 0.58 0.59 0.59 0.56 0.57 0.59 0.56 0.52 0.55
CG # of imported calls 0.56 0.57 0.65 0.59 0.65 0.62 0.56 0.61 0.67 0.50 0.51 0.62 0.60 0.59 0.59 0.62 0.59 0.61 0.60 0.62 0.53 0.59 0.62 0.52 0.52 0.51
CG # of incoming calls 0.56 0.55 0.61 0.58 0.63 0.60 0.55 0.59 0.61 0.52 0.54 0.59 0.63 0.59 0.60 0.62 0.59 0.57 0.61 0.60 0.54 0.58 0.61 0.53 0.54 0.50
CG # of outgoing calls 0.59 0.53 0.67 0.60 0.68 0.67 0.58 0.64 0.69 0.60 0.60 0.63 0.69 0.63 0.56 0.65 0.62 0.60 0.64 0.66 0.57 0.64 0.68 0.55 0.54 0.53
Inst Avg. # of arith+shift 0.35 0.35 0.55 0.43 0.52 0.52 0.36 0.47 0.39 0.25 0.26 0.40 0.53 0.36 0.36 0.49 0.49 0.43 0.55 0.53 0.35 0.35 0.50 0.30 0.27 0.24
Inst Avg. # of compare 0.44 0.40 0.52 0.46 0.51 0.52 0.44 0.49 0.45 0.44 0.37 0.50 0.55 0.46 0.43 0.50 0.49 0.46 0.54 0.55 0.33 0.37 0.54 0.29 0.39 0.21
Inst Avg. # of ctransfer 0.34 0.33 0.45 0.37 0.42 0.42 0.33 0.40 0.39 0.36 0.38 0.39 0.46 0.37 0.35 0.39 0.39 0.38 0.43 0.46 0.30 0.28 0.43 0.24 0.31 0.18
Inst Avg. # of ctransfer+cond. 0.27 0.25 0.32 0.28 0.32 0.31 0.26 0.30 0.29 0.28 0.29 0.29 0.33 0.28 0.28 0.29 0.29 0.28 0.33 0.34 0.23 0.20 0.32 0.17 0.22 0.11
Inst Avg. # of dtransfer 0.34 0.30 0.49 0.38 0.46 0.49 0.35 0.43 0.35 0.31 0.33 0.38 0.52 0.36 0.31 0.43 0.43 0.37 0.49 0.49 0.35 0.33 0.47 0.27 0.31 0.19
Inst Avg. # of dtransfer+misc 0.32 0.28 0.48 0.36 0.44 0.47 0.34 0.41 0.35 0.28 0.30 0.37 0.49 0.34 0.29 0.42 0.42 0.35 0.48 0.48 0.34 0.32 0.45 0.26 0.29 0.18
Inst Avg. # of float instrs. 0.25 0.30 0.34 0.28 0.25 0.34 0.28 0.26 0.28 0.31 0.29 0.31 0.40 0.26 0.28 0.31 0.31 0.29 0.28 0.33 0.25 0.31 0.35 0.25 0.44 0.20
Inst Avg. # of total instrs. 0.30 0.27 0.42 0.34 0.40 0.42 0.32 0.38 0.33 0.28 0.28 0.34 0.45 0.32 0.28 0.38 0.38 0.33 0.42 0.43 0.31 0.29 0.40 0.24 0.28 0.17
Inst # of arith 0.40 0.43 0.64 0.51 0.62 0.61 0.46 0.55 0.43 0.28 0.29 0.48 0.62 0.41 0.44 0.58 0.56 0.53 0.61 0.60 0.40 0.50 0.58 0.35 0.33 0.27
Inst # of arith+shift 0.40 0.43 0.64 0.51 0.62 0.61 0.46 0.55 0.44 0.27 0.28 0.47 0.63 0.41 0.43 0.58 0.56 0.53 0.61 0.61 0.40 0.50 0.59 0.35 0.32 0.27
Inst # of bit-manipulating 0.26 0.29 0.35 0.28 0.33 0.32 0.26 0.30 0.19 0.13 0.20 0.33 0.17 0.25 0.27 0.32 0.30 0.33 0.31 0.33 0.25 0.23 0.24 0.18 0.41 0.03
Inst # of compare 0.56 0.53 0.67 0.61 0.69 0.69 0.60 0.65 0.50 0.60 0.44 0.65 0.72 0.60 0.59 0.64 0.60 0.64 0.65 0.71 0.39 0.40 0.70 0.30 0.50 0.22
Inst # of ctransfer 0.50 0.45 0.61 0.52 0.60 0.62 0.49 0.56 0.60 0.54 0.57 0.58 0.65 0.56 0.45 0.55 0.54 0.57 0.58 0.63 0.39 0.38 0.64 0.33 0.41 0.26
Inst # of cond. ctransfer 0.60 0.54 0.68 0.61 0.69 0.70 0.63 0.67 0.69 0.66 0.67 0.69 0.72 0.67 0.60 0.64 0.60 0.64 0.65 0.72 0.39 0.37 0.71 0.31 0.52 0.25
Inst # of dtransfer 0.42 0.36 0.63 0.46 0.61 0.61 0.48 0.55 0.48 0.37 0.41 0.50 0.64 0.46 0.34 0.57 0.56 0.49 0.61 0.61 0.41 0.39 0.61 0.33 0.38 0.26
Inst # of dtransfer+misc 0.41 0.35 0.63 0.45 0.60 0.61 0.48 0.55 0.50 0.35 0.37 0.50 0.64 0.45 0.33 0.56 0.55 0.48 0.61 0.62 0.40 0.39 0.61 0.33 0.39 0.25
Inst # of float instrs. 0.25 0.30 0.34 0.28 0.25 0.35 0.28 0.27 0.28 0.31 0.29 0.31 0.40 0.26 0.28 0.31 0.32 0.29 0.28 0.33 0.30 0.33 0.35 0.26 0.44 0.20
Inst # of misc 0.30 0.26 0.52 0.34 0.48 0.48 0.33 0.42 0.11 0.31 0.27 0.46 0.67 0.34 0.23 0.39 0.38 0.38 0.48 0.50 0.30 0.31 0.50 0.26 0.32 0.15
Inst # of shift 0.36 0.38 0.45 0.38 0.45 0.40 0.36 0.41 0.30 0.46 0.47 0.42 0.55 0.38 0.34 0.39 0.38 0.42 0.39 0.47 0.41 0.40 0.44 0.38 0.48 0.49
Inst # of total instrs. 0.43 0.38 0.62 0.47 0.60 0.61 0.50 0.56 0.54 0.37 0.38 0.52 0.63 0.47 0.35 0.56 0.54 0.50 0.59 0.61 0.39 0.39 0.59 0.32 0.42 0.25

4 Avg. TP-TN Gap 0.42 0.41 0.53 0.45 0.52 0.52 0.44 0.49 0.46 0.42 0.43 0.49 0.55 0.46 0.42 0.49 0.48 0.48 0.51 0.54 0.39 0.38 0.53 0.32 0.42 0.27
Avg. TP-TN Gap of Grey 0.49 0.44 0.54 0.49 0.59 0.60 0.52 0.56 0.57 0.52 0.50 0.59 0.60 0.57 0.49 0.56 0.54 0.53 0.57 0.53 0.48 0.48 0.57 0.44 0.47 0.45

5 Avg. # of Selected Features 8.5 13.9 9.3 12.9 10.1 8.7 11.7 11.0 11.0 12.0 11.0 7.1 8.4 7.3 11.0 10.0 5.7 14.3 5.3 16.5 8.3 9.9 15.7 6.1 11.6 8.1

6 ROC AUC 0.95 0.93 0.99 0.96 1.00 1.00 0.97 0.98 1.00 0.98 0.98 0.99 1.00 0.98 0.96 0.99 0.97 0.97 0.98 1.00 0.98 0.98 1.00 0.95 0.93 0.91
Std. of ROC AUC 0.00

7 Average Precision (AP) 0.95 0.93 0.99 0.97 1.00 1.00 0.97 0.99 0.99 0.97 0.98 0.99 1.00 0.98 0.96 0.99 0.98 0.98 0.98 1.00 0.98 0.98 1.00 0.95 0.93 0.90
Std. of AP 0.00 0.01

All values in the table are 10-fold cross validation averages. We color a cell gray if a feature was consistently selected (i.e., 10 times) during the 10-fold validation.
Due to the space constraints, we only display features that have been selected at least once during the 10-fold validation.

† We compare a function from the NORMAL to the corresponding function in each target dataset.
‡ We match functions whose compiler options are largely distant to test for bad cases. Please refer to §5.1.8 for additional information.
↑ These in the first rows (1) are divided by 104 instead of 106.
∗ The train and test times in the seconds rows (2) do not include the time for data loading.

5.1.4 ARM binaries are closer to x86 binaries than MIPS

The tests in the Arch group measure the influence of target
architectures with the NORMAL dataset. Overall, the target
architecture did not have much of an effect on the accuracy
rate. The AUCs were over 0.98 in all the cases. Surprisingly,
the x86 vs. ARM test had the highest TP-TN gap (0.46) and
AUC (1.0), indicating that the presemantic features of the
x86 and ARM binaries are similar to each other, despite
being distinct architectures. The ARM vs. MIPS test showed
a lower TP-TN gap (0.43) and AUC (0.98) although both of
them are RISC architectures. Additionally, the effect of the
word size (i.e., bits) and endianness was relatively small.
Nevertheless, we cannot rule out the possibility that our
feature extraction for MIPS binaries is erroneous. We further
discuss this issue in §7.1.

5.1.5 Closer optimization levels show similar results

We also measured the effect of size optimization (Os) by
matching function λ in the NORMAL dataset with a function
(λTP and λTN) in the SIZEOPT dataset. Subsequently, the bi-
naries compiled with the Os option were similar to the ones
compiled with the O1 and O2 options. This is not surprising
because Os enables most of the O2 techniques in both GCC
and Clang [125], [126]. Furthermore, we observe that the O1

and O2 options produce similar binaries, although this is not
shown in Table 6 due to the space limit.

5.1.6 Extra options have less impact
To assess the influence of the PIE, no-inline, and LTO op-
tions, we compared functions in the NORMAL dataset with
those in the PIE, NOINLINE, and LTO datasets, respectively.
For the no-inline test, we limit the optimization level from
O1 to O3 as function inlining is applied from O1. It was
observed that the influence of such extra options is not
significant. Binaries with and without the PIE option were
similar to each other because it only changes the instruc-
tions to use relative addresses; hence, it does not affect
our presemantic features. Function inlining also does not
affect several features, such as the number of incoming calls,
which results in a high AUC (0.97). LTO does not exhibit any
notable effects either.

However, by analyzing each test case, we found that
some options affect the AUC more than others. For example,
in the no-inline test, the AUC largely decreases as the
optimization level increases: O1 (0.995), O2 (0.981), and O3
(0.967). This is because as more optimization techniques
are applied, more functions are inlined and transformed
in the NORMAL, while their corresponding functions in the
NOINLINE are not inlined. On the other hand, in the LTO

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 13

test, the AUC increases as the version of Clang increases:
v4 (0.956), v5 (0.968), v6 (0.986), and v7 (0.986). In contrast,
GCC shows stable AUCs (0.987–0.988) across all versions,
and all the AUCs are higher than those of Clang. This result
indicates that varying multiple options would significantly
affect the success rate, which we describe below.

5.1.7 Obfuscator-LLVM does not affect CG features
Many previous studies [20], [31], [61], [67], [70] chose
Obfuscator-LLVM [105] for their obfuscation tests as it
significantly varies the binary code [20]. However, apply-
ing all of its three obfuscation options shows an AUC of
0.95 on our dataset, which is relatively higher than that
of the optimization level tests. Obfuscation severely de-
creases the average TP-TN gaps except for CG features.
This is because Obfuscator-LLVM applies intra-procedural
obfuscation. The SUB obfuscation substitutes arithmetic in-
structions while preserving the semantics; the BCF obfusca-
tion notably affects CFG features by adding bogus control
flows; the FLA obfuscation changes the predicates of control
structures [127]. However, none of them conducts inter-
procedural obfuscation, which modifies the function call
relationship. Thus, we encourage future studies to use other
obfuscators, such as Themida [128] or VMProtect [107], for
evaluating their techniques against inter-procedural obfus-
cation.

5.1.8 Comparison target option does matter
Based on the experimental results thus far, we perform extra
tests to understand the influence of comparing multiple
compiler options by intentionally selecting λTP and λTN

from binaries that could provide the lowest TP-TN gap. In
this study, we present two of them because of the space
limit. Specifically, for the first test, we selected functions
from 32-bit ARM binaries compiled using GCC v4 with the
O0 option, and the corresponding λTP and λTN functions
from 64-bit MIPS big-endian binaries compiled using Clang
v7 with the O3 option. For the second test, we changed
the Clang compiler to the Obfuscator-LLVM with all three
obfuscation options turned on. The Bad column of the table
summarizes the results. The AUC in both cases was approxi-
mately 0.93 and 0.91, respectively. Their average TP-TN gaps
were also significantly lower (0.42 and 0.27) than those in
the other tests. This signifies the importance of choosing
the comparison targets for evaluating BCSA techniques.
Existing BCSA research compares functions for all possible
targets in a dataset, as shown in the Rand. tests in this
study. However, our results suggest that researchers should
carefully choose evaluation targets to avoid overlooking the
influence of bad cases.

5.2 Comparison Against State-of-the-Art Techniques
From our experiments in §5.1, we show that using only pre-
semantic features with a simple linear model (i.e., TIKNIB)
is enough to obtain high AUC values. Next, we compare
TIKNIB with state-of-the-art techniques.

To accomplish this, we chose one of the latest ap-
proaches, VulSeeker [13], as our target because it utilizes
both presemantic and semantic features in a numeric form
by leveraging neural network-based post-processing. Thus,

TABLE 7: Summary of datasets for comparing TIKNIB to
VulSeeker (i.e., ASE datasets).

Name Package Architecture Compiler
(GCC)

of Orig.
Funcs

of Final
Funcs

ASE1 OpenSSL v1.0.1{f,u} {x86,arm,mips} 32 v5.5.0 152K 126K

ASE2
OpenSSL v1.0.1{f,u}
BusyBox v1.21
Coreutils v6.{5,7}

” ” 704K 183K

ASE3 ” {x86,arm,mips} 32,
{x86,arm,mips} 64

v4.9.4,
v5.5.0 2,777K 735K

ASE4 ” Same as NORMAL options 16,799K 4,467K

As the index of the dataset grows, the number of packages, architectures,
and compiler options increases ASE1 and ASE3 are the datasets used in
VulSeeker [13]. For all datasets, the optimization levels are O0–O3.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ASE1 (AUC = 0.9724 ± 0.0017)
ASE2 (AUC = 0.9763 ± 0.0007)
ASE3 (AUC = 0.9783 ± 0.0005)
ASE4 (AUC = 0.9585 ± 0.0017)

(a) ROC AUCs for all ASE
datasets.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 0 (AUC = 0.9787)
1 (AUC = 0.9783)
2 (AUC = 0.9791)
3 (AUC = 0.9786)
4 (AUC = 0.9782)
5 (AUC = 0.9793)
6 (AUC = 0.9778)
7 (AUC = 0.9777)
8 (AUC = 0.9779)
9 (AUC = 0.9777)

(b) ROC AUC of each fold for
ASE3.

Fig. 2: Results obtained by running TIKNIB on ASE datasets.

we can directly evaluate our simple model using numeric
presemantic features. Note that our goal is not to claim that our
approach is better, but to demonstrate that the proper engineering
of presemantic features can achieve results that are comparable to
those of state-of-the-art techniques.

For this experiment, we prepared the datasets of
VulSeeker, along with the additional ones as listed in Table 7.
We refer to these datasets as ASE1 through ASE4. ASE1
and ASE3 are the ones used in VulSeeker, and ASE2 and
ASE4 are extra ones with more packages, target architec-
tures, and compilers. Note that the number of packages,
architectures, and compiler options increases as the index of
the dataset increases. The optimization levels for all datasets
are O0–O3. We intentionally omitted firmware images used
in the original paper, as they do not provide solid ground
truth. For each dataset, we established the ground truth in
the same way described in §3.2. The time spent for IDA pre-
processing, ground truth building, and feature extracting
was 2197 s, 889 s, and 239 s, respectively. We then conducted
experiments with the methodology explained in §4; note
that the same methodology was used in the original paper.

Figure 2 depicts the results. Figure 2a shows that the
AUCs of TIKNIB on ASE1 and ASE3 are 0.9724 and 0.9783,
respectively. However, those of VulSeeker were 0.99 and
0.8849 as reported by the authors [13]. Figure 2b illustrates
that the AUC of each fold in ASE3 ranged from 0.9777
to 0.9793, which is higher than that of VulSeeker (0.8849).
Therefore, TIKNIB was more robust than VulSeeker in terms
of the size and compile options in the dataset. TIKNIB also
exhibits stable results, even for ASE2 and ASE4.

From these results, we conclude that presemantic fea-
tures combined with proper feature engineering can achieve
results that are comparable to those of state-of-the-art BCSA
techniques. Although our current focus is on comparing
feature values, it is possible to extend our work to analyze
the complex relationships among the features by utilizing
advanced machine learning techniques [12], [13], [19], [20],
[21], [23], [24], [25], [26], [27], [28], [29].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 14

TABLE 8: Real-world vulnerability (Heartbleed, CVE-2014-0160) analysis result using TIKNIB (top-k and precision@1).
Source option All ARM ARM ARM MIPS MIPS MIPS x86 x86 x86 O2 O3 GCC GCC v4 GCC v8 Clang v4 Clang v7

to to to to to to to to to to to to to to to to to to
Target option All ARM MIPS x86 MIPS ARM x86 x86 ARM MIPS O3 O2 Clang GCC v8 GCC v4 Clang v7 Clang v4

of Option Pairs 552 56 64 64 56 64 64 56 64 64 144 144 144 36 36 36 36

Rank (tls, vuln)∗ 1.19 1.14 1.66 1 1 1.62 1 1 1.25 1 1.18 1.19 1 1.44 1.06 1 1
Precision@1 (tls, vuln)∗ 0.89 0.86 0.66 1 1 0.75 1 1 0.75 1 0.9 0.89 1 0.78 0.94 1 1

Rank (dtls, vuln)† 4.54 9.82 11.81 3.06 2 4.72 2 2.07 1.75 3.62 4.5 4.38 2.72 3.11 5.06 3.61 3.33
Rank (tls, patched)‡ 29.16 12.12 57.69 3.56 3.82 51.62 43.94 4.29 6.38 70.59 27.5 28.96 27.68 32.89 40.89 20.22 22.67
Rank (dtls, patched)‡ 76.47 46.95 145.75 7.25 8.21 128 128.94 9.57 11.94 181.03 73.04 75.41 87.31 66.28 87.33 68.44 78

We tested three 64-bit architectures (aarch64, x86-64, and mips64el) that are widely used in software packages.
All rank and precision@1 values are averaged; because each test involves multiple combinations of options (the first row), their results are averaged.

∗ These are the results of the vulnerable tls1_process_heartbeat function in OpenSSL v1.0.1f.
† This is the result of the vulnerable dtls1_process_heartbeat function in OpenSSL v1.0.1f, which is similar to but distinct from the
tls1_process_heartbeat function.

‡ These are the results of their patched versions in OpenSSL v1.0.1u.

5.3 Analysis Case Study: Heartbleed (CVE-2014-0160)

To further assess the effectiveness of presemantic features,
we apply TIKNIB to vulnerability discovery, which is a com-
mon practical application of BCSA [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21]. We investigate whether
TIKNIB can effectively identify a vulnerable function across
various compiler options and architectures.

We chose the tls1_process_heartbeat function in
the OpenSSL package as our target function because it
contains the infamous Heartbleed vulnerability (i.e., CVE-
2014-0160), which has been widely used in prior studies
for evaluation [11], [12], [20], [23]. We utilized two versions
of OpenSSL in the ASE4 dataset shown in Table 7: v1.0.1f
contains the vulnerable function, while v1.0.1u contains the
patched version. As the dataset was compiled with 288
distinct combinations of compiler options and architectures,
each function has 576 samples: 288 (the number of possi-
ble combinations) × 2 (the number of available OpenSSL
versions) ≈ 576.

Notably, testing all possible combinations of options
entails a significant computational overhead; it requires
288 (the number of options for our target function) ×
287 (the number of options for a function in OpenSSL) ×
2 (the number of OpenSSL versions) × 5K (the number
of functions in OpenSSL) ≈ 826M operations. Therefore,
we focused on architectures and compiler options that are
widely used in software packages. Specifically, we chose
three 64-bit architectures (aarch64, x86-64, and mips64el)
and two levels of optimization (O2–O3). This setup reflects
real-world scenarios, as many software packages use O2–O3
by default: coreutils uses O2, while OpenSSL uses O3.
Previous studies [20], [59] also used the same setup (O2–O3)
except that they only tested x86 binaries. Additionally, we
selected four compilers (Clang v4.0, Clang, v7.0, GCC v4.9.4,
and GCC v8.2.0) to consider extreme cases. Consequently,
there were 24 possible combinations of these architectures
and compiler options.

We conducted a total of 552 tests on these 24 option com-
binations: 24 (the number of options for our target function)
× 23 (the number of options for a function in OpenSSL).
For each test, we simply computed the similarity scores for
all function pairs using TIKNIB and checked the rank of
the vulnerable function. To reflect real-world scenarios, we
assumed in all tests that we were not aware of the precise
optimization level, compiler type, or compiler version of
the testing binary. On the other hand, we assumed that we
could recognize the architecture of the testing binary as it

is straightforward. Therefore, when we train TIKNIB, we
chose a feature set that achieved the best performance across
all possible combinations of optimization levels, compiler
types, and compiler versions, while setting the source and
target architectures fixed. For training, we used the NOR-
MAL dataset (Table 3) as it does not include OpenSSL; thus,
the training and testing datasets are completely distinct.

Table 8 summarizes the results, with each column corre-
sponding to the tests for the specified options. We organized
the results by the option group specified in each column af-
ter running all 522 tests. The first row of the table (# of Option
Pairs) indicates the total number of option pairs, which is the
same as that of true positive pairs. The remaining rows of
the table show the averaged values obtained by the option
pair tests. For example, the All to All column represents the
averaged results of all possible combinations (24× 23). The
ARM to MIPS column, on the other hand, represents the
averaged results of all combinations with the source and
target architectures set to ARM and MIPS, respectively. That
is, we queried the vulnerable functions compiled with ARM
and searched for their true positives compiled with MIPS
while varying the other options.

In the majority of the tests, TIKNIB successfully iden-
tified the vulnerable function with a rank close to 1.0
and a precision@1 close to 1.0, demonstrating its effective-
ness in vulnerability discovery. Meanwhile, it performed
marginally worse in the tests for MIPS. This result corrobo-
rates our observation in §5.1 that feature extraction for MIPS
binaries can be erroneous. We further discuss this issue
in §7.1. Additionally, the last three rows of Table 8 display
the ranks of additional functions worth noting. The dtls
represents the DTLS implementation of our target function
(i.e., dtls1_process_heartbeat), which also contains
the same vulnerability. Due to its similarity to our target
function, it was ranked highly in all tests. The last two rows
of the table present the ranks of the patched versions of
these two functions in OpenSSL v1.0.1u. Notably, the patch
of the vulnerability affects the presemantic features of these
functions, particularly the number of control transfer and
arithmetic instructions. Consequently, the patched functions
had a low rank.

5.4 Analyzing Real-World Vulnerabilities on Firmware
Images of IoT Devices

We further evaluate the efficacy of presemantic features by
identifying vulnerable functions in real-world firmware im-
ages of IoT devices using TIKNIB. For the firmware images,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 15

TABLE 9: Top-k results of identifying CVE-2015-1791 for
52M functions in 1,124 IoT firmware images using TIKNIB.

Top-k Gemini† VulSeeker† TIKNIB (Ours)

1 1 (100%) 1 (100%) 1 (100%)
5 2 (40%) 3 (60%) 5 (100%)

10 4 (40%) 6 (60%) 10 (100%)
50 36 (72%) 41 (82%) 46 (92%)

100 75 (75%) 83 (83%) 82 (82%)
† Among 43 BCSA papers that we studied in §2, 10 released their source

code, and two of these 10 support both ARM and MIPS architectures
(Gemini [12] and VulSeeker [13]). However, we were not able to compare
the results directly because these tools released neither their firmware
datasets nor complete source code. Here, we present the results stated in
the latest one [13]; note that their firmware dataset is different from the
one that we used.

we utilized the firmware dataset of FirmAE [129], which is
one of the industry-leading large-scale firmware emulation
frameworks. The dataset consists of 1,124 firmware images
of wireless routers and IP cameras from the top eight ven-
dors.

Particularly, we search for another infamous vulnerabil-
ity (CVE-2015-1791) from OpenSSL, which has a race con-
dition error in the ssl3_get_new_session_ticket()
function. This vulnerability has also been extensively used
in previous studies [12], [13], [23]. Since there exist numer-
ous functions (≈52M) in the firmware images, identifying
the vulnerable function among them is sufficient to evaluate
the impact of presemantic features.

We evaluate our system, TIKNIB, against state-of-the-
art techniques that support both ARM and MIPS architec-
tures [12], [13]. Notably, these two architectures are preva-
lent in IoT devices [129]. However, while analyzing the
repositories of these tools, we found that they did not
include their complete source code nor datasets. As a result,
we were unable to directly compare our system to theirs.
Instead, we compared the results to the ones stated in the
paper [13]. Specifically, we compiled the vulnerable version
of OpenSSL (i.e., v1.0.1f) using a variety of compiler options
and architectures, including six architectures (x86, ARM,
and MIPS, each with 32 and 64 bits), two compilers (GCC
v4.9.4 and v5.5.0), and two optimization levels (O2–O3).
Here, we used two optimization levels (O2–O3) because
many real-world software packages use them by default, as
described in §5.3. Consequently, we obtained 24 samples of
the vulnerable function. Notably, this dataset is essentially a
subset of the ASE3 dataset, which is introduced in Table 7.
Then, we queried each sample vulnerable function against
all 52M functions in the 1,124 firmware images. This resulted
in 24 similarity scores for each of the 52M functions. We
then calculated the top-k result by averaging the similarity
scores for each function. Finally, we manually counted the
number of functions that were actually vulnerable in the
top-100 results.

Table 9 summarizes the top-k results for the average
similarity score for all 52M firmware functions. While our
dataset is distinct from those used in the previous stud-
ies [12], [13], TIKNIB equipped with presemantic features
achieved a level of performance comparable to that of the
state-of-the-art tools. It should be noted that our objective
is not to assert that our approach is superior to the state-of-the-
art tools, but rather to demonstrate the efficacy of appropriately
utilizing presemantic features. Additionally, our experimental
results indicate that the real-world IoT firmware images (at

least those that we tested) are highly likely to be compiled
with O2 or O3.

6 BENEFIT OF TYPE INFORMATION (RQ3)

To assess the implication of debugging information on
BCSA, we use type information as a case study on the
presumption that they do not vary unless the source code is
changed. Specifically, we extract three types of features per
function: the number of arguments, the types of arguments,
and the return type of a function. Note that inferring the
correct type information is challenging and is actively re-
searched [130], [131]. In this context, we only consider basic
types: char, short, int, float, enum, struct, void,
and void *. To extract type information, we create a type
map to handle custom types defined in each package by
recursively following definitions using Ctags [132]. We then
assign a unique prime number as an identifier to each type.
To represent the argument types as a single number, we
multiply their type identifiers.

To investigate the benefit of these type features, we
conducted the same experiments described in §5, and Ta-
ble 10 presents the results. Here, we explain the results by
comparing them with Table 6, which we obtained without
using the type features. The first row of Table 10 shows
that the average number of selected features, including
type features, is smaller than that of selected features (5)
in Table 6. Note that all three type features were always
selected in all tests. The second row in Table 10 shows
that utilizing the type features could achieve a large TP-TN
gap on average (over 0.50); the corresponding values in 4
of Table 6 are much smaller. Consequently, the AUC and AP
with type features reached over 0.99 in all tests, as shown
in the last two rows of Table 10. Additionally, it shows a
similar result (i.e., an AUC close to 1.0) on the ASE datasets
that we utilized for the state-of-the-art comparison (§5.2).

This result confirms that type information indeed bene-
fits BCSA in terms of the success rate, although recovering
such information is a difficult task. Therefore, we encourage
further research on BCSA to take account of recovering
debugging information, such as type recovery or inference,
from binary code [130], [131], [133], [134], [135], [136].

7 FAILURE CASE INQUIRY (RQ4)

We carefully analyzed the failure cases in our experiments
and found their causes. It was possible because our bench-
mark (i.e., BINKIT) has the ground truth and our tool (i.e.,
TIKNIB) uses an interpretable model. We first checked the
TP-TN gap of each feature for failure cases and further
analyzed them using IDA Pro. We found that optimiza-
tion largely affects the BCSA performance, as described
in §5.1. In this section, we discuss other failure causes and
summarize the lessons learned; however, many of these
causes are closely related to optimization. We categorized
the causes into three cases: (1) errors in binary analysis tools
(§7.1), (2) differences in compiler back-ends (§7.2), and (3)
architecture-specific code (§7.3).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 16

TABLE 10: In-depth analysis results of presemantic and type features obtained by running TIKNIB on BINKIT.

Opt Level Compiler Arch vs. SizeOpt† vs. Extra† vs. Obfus.† Bad‡

Rand.
O0
vs.
O3

O2
vs.
O3

Rand.
GCC 4

vs.
GCC 8

Clang 4
vs.

Clang 7

GCC
vs.

Clang
Rand.

x86
vs.

ARM
x86
vs.

MIPS
ARM

vs.
MIPS

32
vs.
64

LE
vs.
BE

Rand.
O0
vs.
Os

O1
vs.
Os

O3
vs.
Os

PIE NoInline LTO BCF FLA SUB All Norm.
Norm.

vs.
Obfus.

†

Avg. # of Selected Features 4.0 4.0 6.8 5.3 7.1 10.5 6.8 3.0 12.0 6.4 7.1 9.4 7.7 9.0 7.0 7.0 7.0 8.4 6.0 7.6 7.0 7.0 8.3 6.0 4.0 4.5
Avg. TP-TN Gap of Grey 0.53 0.52 0.56 0.53 0.58 0.59 0.53 0.56 0.54 0.54 0.54 0.56 0.56 0.55 0.54 0.57 0.57 0.56 0.56 0.55 0.50 0.52 0.58 0.50 0.55 0.55
ROC AUC 0.99 0.99 1.00 0.99 1.00 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
Average Precision (AP) 0.99 0.99 1.00 0.99 1.00 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98

All values in the table are 10-fold cross validation averages.
† We compare a function from the NORMAL to the corresponding function in each target dataset.
‡ We match functions whose compiler options are largely distant to test for bad cases. Please refer to §5.1.8 for additional information.

7.1 Errors in Binary Analysis Tools

Most BCSA research heavily relies on COTS binary analysis
tools such as IDA Pro [95]. However, we found that IDA Pro
can yield false results. First, IDA Pro fails to analyze indirect
branches, especially when handling MIPS binaries compiled
with Clang using the position-independent code (PIC) op-
tion. The PIC option sets the compiler to generate machine
code that can be placed in any address, and it is mainly used
for compiling shared libraries or PIE binaries. Particularly,
compilers use register-indirect branch instructions, such as
jalr, to invoke functions in a position-independent man-
ner. For example, when calling a function, GCC stores the
base address of the Global Offset Table (GOT) in the gp
register, and uses it to calculate the function addresses at
runtime. In contrast, Clang uses the s0 or v0 register to
store such base addresses. This subtle difference confuses
IDA Pro and makes it fail to obtain the base address of
the GOT, so that it cannot compute the target addresses of
indirect branches.

Moreover, IDA Pro sometimes generates incomplete
CFGs. When there is a switch statement, compilers often
make a table that stores a list of jump target addresses.
However, IDA Pro often failed to correctly identify the
number of elements in the table, especially on the ARM
architecture, where switch tables can be placed in a code
segment. Sometimes, switch tables are located between basic
blocks, and it is more difficult to distinguish them.

The problem worsens when handling MIPS binaries
compiled for Clang with PIC, because switch tables are
typically stored in a read-only data section, which can be
referenced through a GOT. Therefore, if IDA Pro cannot
fully analyze the base address of the GOT, it also fails to
identify the jump targets of switch statements.

As we manually analyzed the errors, we may have
missed some. Systematically finding such errors is a difficult
task because the internals of many disassembly tools are
not fully disclosed, and they differ significantly. One may
extend the previous study [96] to further analyze the errors
of disassembly tools and extracted features, and we leave
this for future studies.

During the analysis, we found that IDA Pro also failed to
fetch some function names if they had a prefix pre-defined
in IDA Pro, such as off_ or sub_. For example, it failed to
fetch the name of the off_to_chars function in the tar
package. We used IDA Pro v6.95 in our experiments, but we
found that its latest version (v7.5) does not have this issue.

7.2 Diversity of Compiler Back-ends

From §5.1, the characteristics of binaries largely vary de-
pending on the underlying compiler back-end. Our study

clang­7.0
arm_32

gcc­8.2.0
arm_32

clang­7.0
mips_32

gcc­8.2.0
mips_32

clang­7.0
x86_32

gcc­8.2.0
x86_32

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

N
um

be
r

of
 F

un
ct

io
ns

400000

500000

600000

700000

800000

900000

N
um

be
r

of
 B

as
ic

 B
lo

ck
s

O0
O1
O2
O3
of bb

Fig. 3: The final number of functions and basic blocks in
NORMAL (see Appendix for the detailed version).

reveals that GCC and Clang emit significantly different
binaries from the same source code.

First, the number of basic blocks for the two compilers
significantly differs. To observe how the number changes
depending on different compiler options and target archi-
tectures, we counted the number for the NORMAL dataset.
Figure 3 illustrates the number of functions and basic blocks
in the dataset for selected compiler options and architectures
(see Appendix for details). As shown in the figure, the
number of basic blocks in binaries compiled with Clang
is significantly larger than that in binaries compiled with
GCC for O0. We figured out that Clang inserts dummy basic
blocks for O0 on ARM and MIPS; these dummy blocks have
only one branch instruction to the next block. These dummy
blocks are removed when the optimization level increases
(O1) as optimization techniques in Clang merge such basic
blocks into their predecessors.

In addition, the two compilers apply different internal
techniques for the same optimization level, while they
express the optimization level with the same terms (i.e.,
O0–O3 and Os). In particular, by analyzing the number of
caller and callee functions, we discovered that GCC applies
function inlining from O1, whereas Clang applies it from O2.
Consequently, the number of functions for each compiler
significantly differs (see the number of functions in O1 for
Clang and that for GCC in Figure 3).

Moreover, we discovered that two compilers internally
leverage different function-level code for specific opera-
tions. For example, GCC has functions, such as __umoddl3
in libgcc2.c or __aeabi_dadd in ieee754-df.S,
to optimize certain arithmetic operations. Furthermore,
on x86, GCC generates a special function, such as
__x86.get_pc_thunk.bx, to load the current instruction

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 17

pointer to a register, whereas Clang inlines this procedure
inside the target function. These functions can largely affect
the call-related features, such as the number of control
transfer instructions or that of outgoing calls. Although
we removed these compiler-specific functions so as not to
include them in our experiments (§3.2), they may have been
inlined in their caller functions in higher optimization levels
(O2–O3). Considering such functions took approximately
4% of the identified functions by IDA Pro, they may have
affected the resulting features.

Similarly, the two compilers also utilize different
instruction-level codes. For example, in the case of move
instructions for ARM, GCC uses conditional instructions,
such as MOVLE, MOVGT, or MOVNE, unless the optimization
level is zero (O0). In contrast, Clang utilizes regular move
instructions along with branch instructions. This signifi-
cantly affects the number of instructions as well as that
of basic blocks in the resulting binaries. Consequently, in
such special cases, the functions compiled using GCC have
a relatively smaller number of basic blocks compared with
those using Clang.

Finally, compilers sometimes generate multiple copies of
the same function for optimization purposes. For example,
they conduct inter-procedural scalar replacement of aggre-
gates, removal of unused parameters, or optimization of
cache/memory usage. Consequently, a compiled binary can
have multiple functions that share the same source code but
have different binary code. We found that GCC and Clang
operate differently on this. Specifically, we discovered three
techniques in GCC that produce function copies with special
suffixes, such as .part, .cold, or .isra. For instance,
for the get_data function of readelf in binutils (in
O3), GCC yields three copies with the .isra suffix, while
Clang does not produce any such functions. Similarly, for
the tree_eval and expr_eval functions in bool (in O3),
GCC produces two copies with the .cold suffix, but Clang
does not. Although we selected only one such copy in our
experiments to avoid biased results (§3.2), the other copies
can still survive in their caller functions by inlining.

In summary, the diversities of compiler back-ends can
largely affect the performance of BCSA, by making the
resulting binaries divergent. Here, we have introduced the
major issues we discovered. We encourage further studies
to investigate the implications of detailed options at each
optimization level across different compilers.

7.3 Architecture-Specific Code
When manually inspecting failures, we found that some
packages have architecture-specific code snippets guarded
with conditional macros such as #if and #ifdef direc-
tives. For example, various functions in OpenSSL, such as
mul_add and BN_UMULT_HIGH, are written in architecture-
specific inline assembly code to generate highly optimized
binaries. This means that a function may correspond to
two or more distinct source lines depending on the target
architecture.

Therefore, instruction-level presemantic features can be
significantly different across different architectures when the
target programs have architecture-specific code snippets,
and one should consider such code when designing cross-
architecture BCSA techniques.

8 DISCUSSION

Our study identifies several future research directions in
BCSA. First, many BCSA papers have focused on building
a general model that can result in stable outcomes with
any compiler option. However, one could train a model
targeting a specific set of compiler options, as shown in our
experiment, to enhance their BCSA techniques. It is evident
from our experiment’s results that one can easily increase
the success rate of their technique by inferring the compiler
options used to compile the target binaries. There exists such
an inference technique [137], and combining it with existing
BCSA methods is a promising research direction.

Second, there are only a few studies on utilizing decom-
pilation techniques for BCSA. However, our study reveals
the importance of such techniques, and thus, invites further
research on leveraging them for BCSA. One could also
conduct a comprehensive analysis on the implication of
semantic features along with decompilation techniques.

Additionally, we investigated fundamental presemantic
features in this study. However, the effectiveness of semantic
features is not well-studied yet in this field. Therefore, we
encourage further research into investigating the effective-
ness of semantic features along with other presemantic
features that are not covered in the study. In particular,
adopting NLP techniques would be another essential study
as in many recent studies.

Our scope is limited to a function-level analysis (§4.1).
However, one may extend the scope to handle other BCSA
scenarios to compare binaries [20], [27], [54] or a series of
instructions [32], [34], [57]. Additionally, one can extend
our approach for various purposes, such as vulnerability
discovery [11], [12], [20], [23], [28], [59], [138], malware
detection [5], [6], [139], [140], [141], [142], [143], library
function identification [71], [84], [144], [145], [146], [147],
plagiarism/authorship detection [8], [82], [148], or patch
identification [149], [150], [151]. However, extending our
work to other BCSA tasks may not be directly applicable.
This is because it requires additional domain knowledge
to design an appropriate model that fits the purpose and
careful consideration of the trade-offs. We believe that the
reported insights in this study can help in this process.

Recall from §2, we did not intend to completely survey
the existing techniques, but instead, we focused on system-
atizing the fundamental features used in previous literature.
Furthermore, our goal was to investigate underexplored
research questions in the field by conducting a series of rig-
orous experiments. For a complete survey, we refer readers
to the recent surveys on BCSA [152], [153].

Finally, because our focus is on comparing binaries with-
out source code, we intentionally exclude similarity com-
parison techniques that require source code. Nevertheless,
it is noteworthy that there has been plentiful literature on
comparing two source code snippets [75], [154], [155], [156],
[157], [158], [159], [160], [161], [162] or comparing source
snippets with binary snippets [163], [164], [165], [166].

9 CONCLUSION

We studied previous BCSA literature in terms of the fea-
tures and benchmarks used. We discovered that none of
the previous BCSA studies used the same benchmark for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 18

their evaluation, and that some of them required manually
fabricating the ground truth for their benchmark. This ob-
servation inspired us to design BINKIT, the first large-scale
public benchmark for BCSA, along with a set of automated
build scripts. Additionally, we developed a BCSA tool,
TIKNIB, that employs an interpretable model. Using our
benchmark and tool, we answered less-explored research
questions regarding the syntactic and structural BCSA fea-
tures. We discovered that several elementary features can
be robust across different architectures, compiler types,
compiler versions, and even intra-procedural obfuscation.
Further, we proposed potential strategies for enhancing
BCSA. We conclude by inviting further research on BCSA
using our findings and benchmark.

ACKNOWLEDGEMENTS

We appreciate the anonymous reviewers for their thoughtful
comments. This work was supported by Institute of Infor-
mation & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government (MSIT)
(No.2021-0-01332, Developing Next-Generation Binary De-
compiler).

REFERENCES

[1] S. P. Reiss, “Semantics-based code search,” in Proceedings of the
International Conference on Software Engineering, 2009, pp. 243–253.

[2] “gpl-violations.org project prevails in court case on
gpl violation by d-link.” [Online]. Available: https:
//web.archive.org/web/20141007073104/http://gpl-violations.
org/news/20060922-dlink-judgement frankfurt.html

[3] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions
in binaries with neural networks,” in Proceedings of the USENIX
Security Symposium, 2015, pp. 611–626.

[4] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“ByteWeight: Learning to recognize functions in binary code,” in
Proceedings of the USENIX Security Symposium, 2014, pp. 845–860.

[5] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch,
C. Kruegel, and S. Zanero, “Identifying dormant functionality
in malware programs,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2010, pp. 61–76.

[6] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: Feature
hashing malware for scalable triage and semantic analysis,” in
Proceedings of the ACM Conference on Computer and Communications
Security, 2011, pp. 309–320.

[7] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with ap-
plications to software plagiarism detection,” in Proceedings of the
International Symposium on Foundations of Software Engineering,
2014, pp. 389–400.

[8] F. Zhang, D. Wu, P. Liu, and S. Zhu, “Program logic based soft-
ware plagiarism detection,” in Proceedings of the IEEE International
Symposium on Software Reliability Engineering, 2014, pp. 66–77.

[9] X. Meng, B. P. Miller, and K.-S. Jun, “Identifying multiple authors
in a binary program,” in Proceedings of the European Symposium on
Research in Computer Security, 2017, pp. 286–304.

[10] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow,
“Leveraging semantic signatures for bug search in binary pro-
grams,” in Proceedings of the Annual Computer Security Applications
Conference, 2014, pp. 406–415.

[11] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE:
Efficient cross-architecture identification of bugs in binary code,”
in Proceedings of the Network and Distributed System Security Sym-
posium, 2016.

[12] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code
similarity detection,” in Proceedings of the ACM Conference on
Computer and Communications Security, 2017, pp. 363–376.

[13] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “VulSeeker: A semantic
learning based vulnerability seeker for cross-platform binary,” in
Proceedings of the ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 896–899.

[14] Y. David, N. Partush, and E. Yahav, “FirmUp: Precise static detec-
tion of common vulnerabilities in firmware,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2018, pp. 392–404.

[15] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K.
Tan, “BinGo: Cross-architecture cross-os binary search,” in Pro-
ceedings of the International Symposium on Foundations of Software
Engineering, 2016, pp. 678–689.

[16] Q. Feng, M. Wang, M. Zhang, R. Zhou, A. Henderson, and H. Yin,
“Extracting conditional formulas for cross-platform bug search,”
in Proceedings of the ACM Symposium on Information, Computer and
Communications Security, 2017, pp. 346–359.

[17] P. Shirani, L. Collard, B. L. Agba, B. Lebel, M. Debbabi, L. Wang,
and A. Hanna, “Binarm: Scalable and efficient detection of vul-
nerabilities in firmware images of intelligent electronic devices,”
in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2018, pp. 114–138.

[18] Y. Xue, Z. Xu, M. Chandramohan, and Y. Liu, “Accurate and
scalable cross-architecture cross-os binary code search with emu-
lation,” IEEE Transactions on Software Engineering, 2018.

[19] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, “αdiff:
Cross-version binary code similarity detection with DNN,” in
Proceedings of the ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 667–678.

[20] S. H. Ding, B. C. Fung, and P. Charland, “Asm2Vec: Boosting
static representation robustness for binary clone search against
code obfuscation and compiler optimization,” in Proceedings of
the IEEE Symposium on Security and Privacy. IEEE, 2019.

[21] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Quer-
zoni, “SAFE: Self-attentive function embeddings for binary sim-
ilarity,” in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2019, pp. 309–
329.

[22] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Proceedings of
the IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 709–
724.

[23] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of
the ACM Conference on Computer and Communications Security,
2016, pp. 480–491.

[24] F. Zuo, X. Li, Z. Zhang, P. Young, L. Luo, and Q. Zeng, “Neural
machine translation inspired binary code similarity comparison
beyond function pairs,” in Proceedings of the Network and Dis-
tributed System Security Symposium, 2019.

[25] N. Marastoni, R. Giacobazzi, and M. Dalla Preda, “A deep
learning approach to program similarity,” in Proceedings of the
1st International Workshop on Machine Learning and Software Engi-
neering in Symbiosis. ACM, 2018, pp. 26–35.

[26] K. Redmond, L. Luo, and Q. Zeng, “A cross-architecture instruc-
tion embedding model for natural language processing-inspired
binary code analysis,” in The NDSS Workshop on Binary Analysis
Research, 2019.

[27] Y. Duan, X. Li, J. Wang, and H. Yin, “DeepBinDiff: Learning
program-wide code representations for binary diffing,” in Pro-
ceedings of the Network and Distributed System Security Symposium,
2020.

[28] P. Sun, L. Garcia, G. Salles-Loustau, and S. Zonouz, “Hybrid
firmware analysis for known mobile and IoT security vulnera-
bilities,” in 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2020, pp. 373–384.

[29] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and
R. Baldoni, “Investigating graph embedding neural networks
with unsupervised features extraction for binary analysis,” in The
NDSS Workshop on Binary Analysis Research, 2019.

[30] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket ex-
ecution: Dynamic similarity testing for program binaries and
components,” in Proceedings of the USENIX Security Symposium,
2014, pp. 303–317.

[31] S. Wang and D. Wu, “In-memory fuzzing for binary code sim-
ilarity analysis,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, 2017, pp. 319–330.

https://web.archive.org/web/20141007073104/http://gpl-violations.org/news/20060922-dlink-judgement_frankfurt.html
https://web.archive.org/web/20141007073104/http://gpl-violations.org/news/20060922-dlink-judgement_frankfurt.html
https://web.archive.org/web/20141007073104/http://gpl-violations.org/news/20060922-dlink-judgement_frankfurt.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 19

[32] S. H. Ding, B. Fung, and P. Charland, “Kam1n0: Mapreduce-
based assembly clone search for reverse engineering,” in Proceed-
ings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 461–470.

[33] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Cross-architecture binary
semantics understanding via similar code comparison,” in Pro-
ceedings of the IEEE International Conference on Software Analysis,
Evolution, and Reengineering, 2016, pp. 57–67.

[34] H. Huang, A. M. Youssef, and M. Debbabi, “BinSequence: Fast,
accurate and scalable binary code reuse detection,” in Proceedings
of the ACM Symposium on Information, Computer and Communica-
tions Security, 2017, pp. 155–166.

[35] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection
across architectures and compiling configurations,” in Proceedings
of the International Conference on Program Comprehension. IEEE
Press, 2017, pp. 88–98.

[36] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K.
Cha, “Testing intermediate representations for binary analysis,”
in Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering, 2017, pp. 353–364.

[37] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 de-
compilation using semantics-preserving structural analysis and
iterative control-flow structuring,” in Proceedings of the USENIX
Security Symposium, 2013, pp. 353–368.

[38] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith, “No
more gotos: Decompilation using pattern-independent control-
flow structuring and semantics-preserving transformations,” in
Proceedings of the Network and Distributed System Security Sympo-
sium, 2015.

[39] R. Real and J. M. Vargas, “The probabilistic basis of jaccard’s
index of similarity,” Systematic biology, vol. 45, no. 3, pp. 380–385,
1996.

[40] H. Bunke, “On a relation between graph edit distance and
maximum common subgraph,” Pattern Recognition Letters, vol. 18,
no. 8, pp. 689–694, 1997.

[41] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signa-
ture verification using a” siamese” time delay neural network,”
in Advances in neural information processing systems, 1994, pp. 737–
744.

[42] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized
trees,” Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

[43] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically
finding semantic differences in binary programs,” in International
Conference on Information and Communications Security. Springer,
2008, pp. 238–255.

[44] T. Dullien and R. Rolles, “Graph-based comparison of executable
objects (english version),” SSTIC, vol. 5, no. 1, p. 3, 2005.

[45] H. Flake, “Structural comparison of executable objects,” in In-
ternational Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Citeseer, 2004, pp. 161–174.

[46] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate
comparison of binary executables,” in Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop.
ACM, 2013, p. 4.

[47] J. Ming, M. Pan, and D. Gao, “ibinhunt: Binary hunting with
inter-procedural control flow,” in International Conference on Infor-
mation Security and Cryptology. Springer, 2012, pp. 92–109.

[48] W. Jin, S. Chaki, C. Cohen, A. Gurfinkel, J. Havrilla, C. Hines,
and P. Narasimhan, “Binary function clustering using semantic
hashes,” in Machine Learning and Applications (ICMLA), 2012 11th
International Conference on, vol. 1. IEEE, 2012, pp. 386–391.

[49] A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast location of
similar code fragments using semantic’juice’,” in Proceedings of
the 2nd ACM SIGPLAN Program Protection and Reverse Engineering
Workshop. ACM, 2013, p. 5.

[50] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, “Sigma: A
semantic integrated graph matching approach for identifying
reused functions in binary code,” Digital Investigation, vol. 12,
pp. S61–S71, 2015.

[51] S. Alrabaee, L. Wang, and M. Debbabi, “BinGold: Towards robust
binary analysis by extracting the semantics of binary code as
semantic flow graphs (sfgs),” Digital Investigation, vol. 18, pp.
S11–S22, 2016.

[52] T. Kim, Y. R. Lee, B. Kang, and E. G. Im, “Binary executable
file similarity calculation using function matching,” The Journal
of Supercomputing, vol. 75, no. 2, pp. 607–622, 2019.

[53] H. Guo, S. Huang, C. Huang, M. Zhang, Z. Pan, F. Shi, H. Huang,
D. Hu, and X. Wang, “A lightweight cross-version binary code
similarity detection based on similarity and correlation coefficient
features,” IEEE Access, vol. 8, pp. 120 501–120 512, 2020.

[54] “Bindiff.” [Online]. Available: https://www.zynamics.com/
bindiff.html

[55] “Diaphora, a Free and Open Source program diffing tool.”
[Online]. Available: http://diaphora.re/

[56] J. W. Oh, “Darungrim: a patch analysis and binary diffing too,”
2015.

[57] Y. David and E. Yahav, “Tracelet-based code search in executa-
bles,” in Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2014, pp. 349–360.

[58] M. R. Farhadi, B. C. Fung, P. Charland, and M. Debbabi, “Bin-
Clone: Detecting code clones in malware,” in Proceedings of the
International Conference on Software Security and Reliability, 2014,
pp. 78–87.

[59] Y. David, N. Partush, and E. Yahav, “Statistical similarity of
binaries,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2016, pp. 266–
280.

[60] N. Lageman, E. D. Kilmer, R. J. Walls, and P. D. McDaniel,
“BinDNN: Resilient function matching using deep learning,” in
International Conference on Security and Privacy in Communication
Systems. Springer, 2016, pp. 517–537.

[61] L. Nouh, A. Rahimian, D. Mouheb, M. Debbabi, and A. Hanna,
“Binsign: fingerprinting binary functions to support automated
analysis of code executables,” in IFIP International Conference on
ICT Systems Security and Privacy Protection. Springer, 2017, pp.
341–355.

[62] Y. David, N. Partush, and E. Yahav, “Similarity of binaries
through re-optimization,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2017, pp. 79–94.

[63] J. Ming, D. Xu, Y. Jiang, and D. Wu, “BinSim: Trace-based se-
mantic binary diffing via system call sliced segment equivalence
checking,” in Proceedings of the USENIX Security Symposium, 2017,
pp. 253–270.

[64] U. Kargén and N. Shahmehri, “Towards robust instruction-level
trace alignment of binary code,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering. IEEE,
2017, pp. 342–352.

[65] C. Karamitas and A. Kehagias, “Efficient features for function
matching between binary executables,” in Proceedings of the IEEE
International Conference on Software Analysis, Evolution, and Reengi-
neering. IEEE, 2018, pp. 335–345.

[66] B. Yuan, J. Wang, Z. Fang, and L. Qi, “A new software birthmark
based on weight sequences of dynamic control flow graph for
plagiarism detection,” The Computer Journal, 2018.

[67] Y. Hu, Y. Zhang, J. Li, H. Wang, B. Li, and D. Gu, “Binmatch:
A semantics-based hybrid approach on binary code clone anal-
ysis,” in Software Maintenance and Evolution (ICSME), 2017 IEEE
International Conference on. IEEE, 2018.

[68] N. Shalev and N. Partush, “Binary similarity detection using
machine learning,” in Proceedings of the 13th Workshop on Pro-
gramming Languages and Analysis for Security. ACM, 2018, pp.
42–47.

[69] M. Luo, C. Yang, X. Gong, and L. Yu, “FuncNet: A euclidean em-
bedding approach for lightweight cross-platform binary recogni-
tion,” in International Conference on Security and Privacy in Commu-
nication Systems. Springer, 2016, pp. 517–537.

[70] J. Jiang, G. Li, M. Yu, G. Li, C. Liu, Z. Lv, B. Lv, and W. Huang,
“Similarity of binaries across optimization levels and obfusca-
tion,” in Proceedings of the European Symposium on Research in
Computer Security, 2020, pp. 295–315.

[71] P. Shirani, L. Wang, and M. Debbabi, “BinShape: Scalable and ro-
bust binary library function identification using function shape,”
in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2017, pp. 301–324.

[72] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scala-
bility simultaneously in detecting application clones on android
markets,” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 175–186.

[73] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware in-
dexing using function-call graphs,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2009, pp.
611–620.

https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html
http://diaphora.re/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 20

[74] S. Henry and D. Kafura, “Software structure metrics based on
information flow,” IEEE transactions on Software Engineering, no. 5,
pp. 510–518, 1981.

[75] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Finding un-
patched code clones in entire os distributions,” in Proceedings of
the IEEE Symposium on Security and Privacy, 2012, pp. 48–62.

[76] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and D. G.
Andersen, “SplitScreen: Enabling efficient, distributed malware
detection,” in Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, 2010, pp. 377–390.

[77] W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: a
search engine for binary code,” in Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 2013, pp.
329–338.

[78] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimiza-
tion,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, 2013,
pp. 305–316.

[79] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu, “Deviation-
based obfuscation-resilient program equivalence checking with
application to software plagiarism detection,” IEEE Transactions
on Reliability, vol. 65, no. 4, pp. 1647–1664, 2016.

[80] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with ap-
plications to software and algorithm plagiarism detection,” IEEE
Transactions on Software Engineering, no. 12, pp. 1157–1177, 2017.

[81] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
“A sense of self for Unix processes,” in Proceedings of the IEEE
Symposium on Security and Privacy, 1996, pp. 120–128.

[82] Z. Tian, Q. Wang, C. Gao, L. Chen, and D. Wu, “Plagiarism detec-
tion of multi-threaded programs via siamese neural networks,”
IEEE Access, vol. 8, pp. 160 802–160 814, 2020.

[83] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J.
Schwartz, and M. Woo, “The art, science, and engineering of
fuzzing: A survey,” IEEE Transactions on Software Engineering,
2019.

[84] F. Gröbert, C. Willems, and T. Holz, “Automated identification
of cryptographic primitives in binary programs,” in International
Workshop on Recent Advances in Intrusion Detection. Springer,
2011, pp. 41–60.

[85] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
1988, pp. 35–46.

[86] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Transactions
on Programming Languages and Systems, vol. 9, no. 3, pp. 319–349,
1987.

[87] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in Advances in neural information
processing systems, 2002, pp. 849–856.

[88] J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo, “Evaluat-
ing bag-of-visual-words representations in scene classification,”
in Proceedings of the international workshop on Workshop on multime-
dia information retrieval. ACM, 2007, pp. 197–206.

[89] R. Arandjelovic and A. Zisserman, “All about vlad,” in Pro-
ceedings of the IEEE conference on Computer Vision and Pattern
Recognition, 2013, pp. 1578–1585.

[90] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” in International Conference on
Machine Learning, 2016, pp. 2702–2711.

[91] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[92] Y. Kim, “Convolutional neural networks for sentence classifica-
tion,” arXiv preprint arXiv:1408.5882, 2014.

[93] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[94] Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in International Conference on Machine Learning,
2014, pp. 1188–1196.

[95] Hex-Rays, “IDA Pro.” [Online]. Available: https://www.
hex-rays.com/products/ida/

[96] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos,
“An in-depth analysis of disassembly on full-scale x86/x64 bina-
ries,” in Proceedings of the USENIX Security Symposium, 2016, pp.
583–600.

[97] M. Jung, S. Kim, H. Han, J. Choi, and S. K. Cha, “B2R2: Building
an efficient front-end for binary analysis,” in Proceedings of the
NDSS Workshop on Binary Analysis Research, 2019.

[98] H. Kim, J. Lee, S. Kim, S. Jung, and S. K. Cha, “How’d security
benefit reverse engineers? the implication of Intel CET on func-
tion identification,” in Proceedings of the International Conference on
Dependable Systems Networks, 2022, pp. 559–566.

[99] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic
function detection in binaries,” in Proceedings of the IEEE European
Symposium on Security and Privacy, 2017, pp. 177–189.

[100] S. Wang, P. Wang, and D. Wu, “Semantics-aware machine learn-
ing for function recognition in binary code,” in Proceedings of the
IEEE International Conference on Software Maintenance and Evolu-
tion, 2017, pp. 388–398.

[101] R. Qiao and R. Sekar, “Function interface analysis: A principled
approach for function recognition in cots binaries,” in Proceedings
of the Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2017, pp. 201–212.

[102] J. Kinder and H. Veith, “Jakstab: A static analysis platform for
binaries,” in Proceedings of the International Conference on Computer
Aided Verification, 2008, pp. 423–427.

[103] SecurityTeam, “Pie,” 2016. [Online]. Available: https://wiki.
ubuntu.com/SecurityTeam/PIE

[104] “GNU packages.” [Online]. Available: https://ftp.gnu.org/gnu/
[105] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-

llvm–software protection for the masses,” in Software Protection
(SPRO), 2015 IEEE/ACM 1st International Workshop on. IEEE,
2015, pp. 3–9.

[106] M. Madou, L. Van Put, and K. De Bosschere, “Loco: An in-
teractive code (de) obfuscation tool,” in Proceedings of the 2006
ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation. ACM, 2006, pp. 140–144.

[107] “VMProtect.” [Online]. Available: http://vmpsoft.com
[108] “Stunnix C/C++ Obfuscator.” [Online]. Available: http://

stunnix.com/prod/cxxo/
[109] “Semantic Designs: Source Code Obfuscators.” [Online]. Avail-

able: http://www.semdesigns.com/Products/Obfuscators/
[110] C. Collberg, “The tigress c diversifier/obfuscator,” Retrieved Au-

gust, vol. 14, p. 2015, 2015.
[111] “Crosstool-NG.” [Online]. Available: https://github.com/

crosstool-ng/crosstool-ng
[112] D. MacKenzie, B. Elliston, and A. Demaille, “Autoconf — creat-

ing automatic configuration scripts,” 1996.
[113] O. Tange, “GNU parallel - the command-line power tool,” ;login:

The USENIX Magazine, vol. 36, no. 1, pp. 42–47, Feb 2011.
[Online]. Available: http://www.gnu.org/s/parallel

[114] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceed-
ings of the Python in Science Conference, 2008, pp. 11–15.

[115] Intel Corporation, “Intel® 64 and ia-32 architectures software de-
veloper’s manual,” https://software.intel.com/en-us/articles/
intel-sdm.

[116] D. Seal, ARM Architecture Reference Manual. Pearson Education,
2001.

[117] MIPS Technologies, Inc., “Mips32 architecture for programmers
volume ii: The mips32 instruction set,” 2001.

[118] Capstone, “The ultimate disassembler.” [Online]. Available:
https://www.capstone-engine.org/

[119] Wikipedia, “Relative change and difference — wikipedia,
the free encyclopedia,” 2018, [Online; accessed ¡today¿].
[Online]. Available: ”https://en.wikipedia.org/w/index.php?
title=Relative change and difference&oldid=872867886”

[120] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” Journal of machine learning research, vol. 3, no.
Mar, pp. 1157–1182, 2003.

[121] R. Caruana and D. Freitag, “Greedy attribute selection,” in Pro-
ceedings of the Eleventh International Conference on Machine Learn-
ing. Morgan Kaufmann, 1994, pp. 28–36.

[122] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine
learning research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[123] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open
source scientific tools for Python,” 2001–. [Online]. Available:
http://www.scipy.org/

https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://wiki.ubuntu.com/SecurityTeam/PIE
https://wiki.ubuntu.com/SecurityTeam/PIE
https://ftp.gnu.org/gnu/
http://vmpsoft.com
http://stunnix.com/prod/cxxo/
http://stunnix.com/prod/cxxo/
http://www.semdesigns.com/Products/Obfuscators/
https://github.com/crosstool-ng/crosstool-ng
https://github.com/crosstool-ng/crosstool-ng
http://www.gnu.org/s/parallel
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://www.capstone-engine.org/
"https://en.wikipedia.org/w/index.php?title=Relative_change_and_difference&oldid=872867886"
"https://en.wikipedia.org/w/index.php?title=Relative_change_and_difference&oldid=872867886"
http://www.scipy.org/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 21

[124] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array:
A structure for efficient numerical computation,” Computing in
Science & Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[125] “Using the GNU compiler collection (GCC): Optimize
options.” [Online]. Available: https://gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html

[126] “Clang - the clang c, c++, and objective-c compiler.” [Online].
Available: https://clang.llvm.org/docs/CommandGuide/clang.
html

[127] T. László and Á. Kiss, “Obfuscating c++ programs via control
flow flattening,” Annales Universitatis Scientarum Budapestinensis
de Rolando Eötvös Nominatae, Sectio Computatorica, vol. 30, pp. 3–
19, 2009.

[128] “Themida: Advanced windows software protection system.”
[Online]. Available: https://www.oreans.com/themida.php

[129] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “FirmAE:
Towards large-scale emulation of iot firmware for dynamic analy-
sis,” in Annual Computer Security Applications Conference (ACSAC),
Online, Dec. 2020.

[130] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can
learn function type signatures from binaries,” in Proceedings of the
USENIX Security Symposium, 2017, pp. 99–116.

[131] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida,
“A tough call: Mitigating advanced code-reuse attacks at the
binary level,” in Proceedings of the IEEE Symposium on Security
and Privacy, 2016, pp. 934–953.

[132] D. Hiebert, “Exuberant Ctags,” 1999.
[133] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled reverse

engineering of types in binary programs,” in Proceedings of the
Network and Distributed System Security Symposium, 2011.

[134] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua,
“Scalable variable and data type detection in a binary rewriter,”
ACM SIGPLAN Notices, vol. 48, no. 6, pp. 51–60, 2013.

[135] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin:
Predicting debug information in stripped binaries,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2018, pp. 1667–1680.

[136] F. Artuso, G. A. Di Luna, L. Massarelli, and L. Querzoni, “In
nomine function: Naming functions in stripped binaries with
neural networks,” arXiv, pp. arXiv–1912, 2019.

[137] N. Rosenblum, B. P. Miller, and X. Zhu, “Recovering the toolchain
provenance of binary code,” in Proceedings of the International
Symposium on Software Testing and Analysis, 2011, pp. 100–110.

[138] M. C. Tol, K. Yurtseven, B. Gulmezoglu, and B. Sunar, “FastSpec:
Scalable generation and detection of spectre gadgets using neural
embeddings,” arXiv preprint arXiv:2006.14147, 2020.

[139] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu,
and E. Kirda, “A quantitative study of accuracy in system call-
based malware detection,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis. ACM, 2012, pp. 122–
132.

[140] D. Babić, D. Reynaud, and D. Song, “Malware analysis with tree
automata inference,” in International Conference on Computer Aided
Verification. Springer, 2011, pp. 116–131.

[141] Y. Xiao, S. Cao, Z. Cao, F. Wang, F. Lin, J. Wu, and H. Bi,
“Matching similar functions in different versions of a malware,”
in 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, 2016, pp. 252–259.

[142] J. Ming, D. Xu, and D. Wu, “Memoized semantics-based binary
diffing with application to malware lineage inference,” in IFIP
International Information Security and Privacy Conference. Springer,
2015, pp. 416–430.

[143] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, “Fossil: a
resilient and efficient system for identifying foss functions in
malware binaries,” ACM Transactions on Privacy and Security,
vol. 21, no. 2, pp. 1–34, 2018.

[144] J. Calvet, J. M. Fernandez, and J.-Y. Marion, “Aligot: crypto-
graphic function identification in obfuscated binary programs,”
in Proceedings of the 2012 ACM conference on Computer and commu-
nications security. ACM, 2012, pp. 169–182.

[145] D. Xu, J. Ming, and D. Wu, “Cryptographic function detection in
obfuscated binaries via bit-precise symbolic loop mapping,” in
Proceedings of the IEEE Symposium on Security and Privacy, 2017,
pp. 921–937.

[146] J. Qiu, X. Su, and P. Ma, “Library functions identification in
binary code by using graph isomorphism testings,” in Proceedings

of the IEEE International Conference on Software Analysis, Evolution,
and Reengineering. IEEE, 2015, pp. 261–270.

[147] L. Jia, A. Zhou, P. Jia, L. Liu, Y. Wang, and L. Liu, “A neural
network-based approach for cryptographic function detection in
malware,” IEEE Access, vol. 8, pp. 23 506–23 521, 2020.

[148] S. Alrabaee, M. Debbabi, and L. Wang, “Cpa: Accurate cross-
platform binary authorship characterization using lda,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 3051–
3066, 2020.

[149] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
security patch analysis for binaries towards understanding the
pain and pills,” in Proceedings of the 39th International Conference
on Software Engineering. IEEE Press, 2017, pp. 462–472.

[150] Y. Hu, Y. Zhang, and D. Gu, “Automatically patching vulnerabil-
ities of binary programs via code transfer from correct versions,”
IEEE Access, vol. 7, pp. 28 170–28 184, 2019.

[151] L. Zhao, Y. Zhu, J. Ming, Y. Zhang, H. Zhang, and H. Yin,
“PatchScope: Memory object centric patch diffing,” in Proceedings
of the ACM Conference on Computer and Communications Security,
2020.

[152] I. U. Haq and J. Caballero, “A survey of binary code similarity,”
arXiv preprint arXiv:1909.11424, 2019.

[153] A. Qasem, P. Shirani, M. Debbabi, L. Wang, B. Lebel, and B. L.
Agba, “Automatic vulnerability detection in embedded devices
and firmware: survey and layered taxonomies,” ACM Computing
Surveys (CSUR), vol. 54, no. 2, pp. 1–42, 2021.

[154] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilin-
guistic token-based code clone detection system for large scale
source code,” IEEE Transactions on Software Engineering, vol. 28,
no. 7, pp. 654–670, 2002.

[155] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local
algorithms for document fingerprinting,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data,
2003, pp. 76–85.

[156] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool for
finding copy-paste and related bugs in operating system code,”
in OSdi, vol. 4, no. 19, 2004, pp. 289–302.

[157] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in Proceedings
of the International Conference on Software Engineering, 2007, pp.
96–105.

[158] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for vulnerability prediction,” arXiv
preprint arXiv:1708.02368, 2017.

[159] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo,
“SymDiff: A language-agnostic semantic diff tool for imperative
programs,” in Proceedings of the International Conference on Com-
puter Aided Verification, 2012, pp. 712–717.

[160] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A scalable approach
for vulnerable code clone discovery,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2017, pp. 595–614.

[161] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the International
Conference on Software Engineering, 2016, pp. 297–308.

[162] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker: an
automated vulnerability detection system based on code similar-
ity analysis,” in Proceedings of the Annual Conference on Computer
Security Applications, 2016, pp. 201–213.

[163] D. Miyani, Z. Huang, and D. Lie, “BinPro: A tool for binary
source code provenance,” arXiv preprint arXiv:1711.00830, 2017.

[164] A. Rahimian, P. Charland, S. Preda, and M. Debbabi, “RESource:
A framework for online matching of assembly with open source
code,” in International Symposium on Foundations and Practice of
Security, 2012, pp. 211–226.

[165] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,”
in Proceedings of the 8th Working Conference on Mining Software
Repositories, 2011, pp. 63–72.

[166] Y. Ji, L. Cui, and H. H. Huang, “BugGraph: Differentiating
source-binary code similarity with graph triplet-loss network,”
in Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, 2021, pp. 702–715.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://www.oreans.com/themida.php

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 22

APPENDIX A
ADDITIONAL RESULTS

TABLE 11: Number of functions and basic blocks in the
NORMAL dataset for each compiler option.

Options # of Functions # of Basic Blocks

Comp.∗ Arch Bit O0 O1 O2 O3 O0 O1 O2 O3

Clang arm 32 35,610 35,638 26,325‡26,210 921,181†422,807 490,029 512,890
GCC arm 32 35,798 28,817‡28,270 26,755 561,575 451,965 450,850 523,404

Clang arm 64 35,612 35,637 26,106 26,005 897,892 466,108 555,294 584,098
GCC arm 64 35,790 28,701 28,155 26,605 566,364 490,574 488,070 576,724

Clang mips 32 35,723 35,741 26,221 26,130 933,529 470,923 547,755 583,302
GCC mips 32 35,898 28,832 28,311 26,778 580,432 552,430 548,533 634,923

Clang mips 64 35,679 35,701 26,222 26,095 921,484 460,491 534,209 569,074
GCC mips 64 35,775 28,732 28,218 26,638 560,243 547,273 533,655 618,634

Clang mipseb 32 35,721 35,741 26,217 26,136 933,654 470,795 547,752 583,189
GCC mipseb 32 35,895 28,831 28,305 26,775 580,544 554,791 549,768 635,195

Clang mipseb 64 35,676 35,700 26,220 26,093 922,077 460,531 534,528 569,063
GCC mipseb 64 35,772 28,728 28,208 26,635 560,230 547,265 533,678 618,663

Clang x86 32 35,466 35,484 25,974 25,878 692,755 479,383 575,554 609,008
GCC x86 32 35,602 28,543 28,476 27,074 562,037 501,925 503,681 580,059

Clang x86 64 34,127 34,202 25,593 25,482 640,058 444,199 551,809 581,622
GCC x86 64 35,837 28,803 28,749 27,308 567,578 499,713 503,899 592,185
∗ We show the numbers for GCC v8.2.0 and Clang v7.0 for clear comparison.
† Clang inserts dummy basic blocks for the O0 option on ARM and MIPS.
‡ GCC starts function inlining from O1, but Clang does from O2.

Table 11 presents the number of functions and basic blocks
in the NORMAL dataset. For comparison, we show the
numbers for the latest versions of GCC and Clang, which are
v8.2.0 and v7.0, respectively. For both compilers, the number
of functions significantly decreases for higher optimization
levels due to function inlining. Meanwhile, the number of
basic blocks does not decrease, as basic blocks can survive
in caller functions although function inlining is applied. The
number even increases as the optimization level increases
from O2 to O3 for both compilers. By analyzing the cases,
we confirmed that one possible reason is loop unrolling,
which unwinds the loops and generates multiple copies of
basic blocks. Consequently, the number of basic blocks for
O3 reaches higher than that for O2.
In this paper, we have described multiple optimization
issues that significantly affect the resulting binary code
and presemantic features. However, we believe that there
exist remaining issues for detailed optimization techniques.
Therefore, we conclude by encouraging further studies to
investigate the implications of detailed options at each opti-
mization level across different compilers.

TABLE 12: Number of binaries, original functions, and filtered (final) functions in BINKIT.

NORMAL SIZEOPT PIE∗ NOINLINE LTO∗ OBFUSCATION

of Functions # of Functions # of Functions # of Functions # of Functions # of Functions

Package
Name Ver. # of

Bins Orig. Final # of
Bins Orig. Final # of

Bins Orig. Final # of
Bins Orig. Final # of

Bins Orig. Final # of
Bins Orig. Final

a2ps 4.14 576 364K 251K 144 88K 60K 576 364K 251K 576 402K 287K 576 244K 141K 256 166K 116K
binutils 2.30 4K 7,752K 1,032K 1K 1,847K 240K 4K 7,748K 1,033K 4K 9,113K 1,266K 4K 5,388K 1,123K 2K 3,615K 486K
bool 0.2.2 288 39K 15K 72 10K 3K 288 40K 15K 288 42K 16K 288 35K 11K 128 18K 7K
ccd2cue 0.5 288 44K 8K 72 11K 2K 288 44K 8K 288 45K 8K 288 39K 5K 128 20K 4K
cflow 1.5 288 151K 85K 72 36K 20K 288 151K 85K 288 173K 106K 288 109K 51K 128 70K 40K
coreutils 8.29 30K 10,396K 507K 8K 2,535K 105K · · · 30K 11,592K 733K 2K 381K 23K 13K 4,744K 251K
cpio 2.12 576 303K 102K 144 76K 25K 576 303K 102K 576 341K 127K 576 228K 68K 256 138K 48K
cppi 1.18 288 85K 32K 72 22K 8K 288 85K 32K 288 91K 37K 288 56K 12K 128 39K 15K
dap 3.10 1K 105K 26K 288 26K 6K 1K 108K 26K 1K 105K 26K 1K 94K 15K 512 46K 11K
datamash 1.3 288 153K 80K 72 37K 18K 288 153K 80K 288 174K 99K · · · 128 71K 38K
direvent 5.1 288 222K 120K 72 54K 29K 288 222K 120K 288 239K 137K 288 156K 70K 128 101K 55K
enscript 1.6.6 864 225K 59K 216 56K 14K 864 225K 59K 864 235K 66K 864 195K 46K 384 101K 27K
findutils 4.6.0 2K 814K 210K 432 198K 48K 2K 815K 210K 2K 925K 269K 2K 603K 189K 768 373K 100K
gawk 4.2.1 288 406K 252K 72 99K 60K 288 403K 252K 288 488K 332K 288 354K 218K 128 195K 123K
gcal 4.1 1K 341K 155K 288 85K 38K 1K 343K 155K 1K 351K 160K 1K 325K 146K 512 151K 69K
gdbm 1.15 1K 317K 98K 288 78K 23K 1K 318K 98K 1K 331K 110K · · · 512 144K 45K
glpk 4.65 576 596K 399K 144 145K 96K 576 596K 399K 576 643K 445K · · · 256 244K 184K
gmp 6.1.2 288 273K 198K 72 67K 48K 288 273K 198K 288 291K 215K · · · 128 123K 90K
gnu-pw-mgr 2.3.1 576 289K 81K 144 66K 16K 576 291K 81K 576 358K 119K 576 201K 50K 256 139K 42K
gnudos 1.11.4 576 188K 82K 144 47K 20K 576 188K 82K 576 189K 82K · · · 256 83K 36K
grep 3.1 288 237K 133K 72 57K 31K · · · 288 286K 180K · · · 128 110K 64K
gsasl 1.8.0 288 125K 84K 72 31K 20K 288 125K 84K 288 131K 90K · · · 128 56K 38K
gsl 2.5 1K 2,043K 1,694K 288 500K 412K 1K 2,044K 1,694K 1K 2,210K 1,851K · · · 512 921K 770K
gss 1.0.3 576 82K 28K 144 20K 7K 576 82K 28K 576 86K 32K · · · 256 36K 13K
gzip 1.9 288 112K 38K 72 28K 9K · · · 288 122K 47K · · · 128 50K 18K
hello 2.10 288 65K 20K 72 17K 6K 288 65K 20K 288 67K 22K 288 43K 6K 128 29K 9K
inetutils 1.9.4 5K 2,083K 267K 1K 507K 65K 5K 2,086K 267K 5K 2,271K 309K 5K 1,719K 260K 2K 946K 122K
libiconv 1.15 864 164K 89K 216 40K 21K 864 164K 89K 864 175K 101K · · · 384 75K 42K
libidn2 2.0.5 288 71K 23K 72 17K 5K 288 71K 23K 288 78K 31K · · · 128 33K 12K
libmicrohttpd 0.9.59 288 109K 46K 72 27K 11K 288 109K 46K 288 115K 52K · · · 128 50K 22K
libosip2 5.0.0 576 303K 188K 144 76K 46K 576 303K 188K 576 312K 196K · · · 256 135K 85K
libtasn1 4.13 1K 158K 35K 288 39K 8K 1K 160K 35K 1K 167K 42K · · · 512 69K 16K
libtool 2.4.6 288 66K 28K 72 16K 7K 288 66K 28K 288 69K 30K · · · 128 30K 13K
libunistring 0.9.10 288 260K 180K 72 61K 41K 288 260K 180K 288 297K 215K · · · 128 179K 86K
lightning 2.1.2 288 131K 101K 72 29K 22K 288 131K 101K 288 175K 144K · · · 128 85K 48K
macchanger 1.6.0 288 37K 7K 72 9K 2K 288 37K 7K 288 38K 8K 288 32K 4K 128 16K 3K
nettle 3.4 1K 92K 11K 288 23K 2K 1K 95K 11K 1K 95K 13K · · · 512 41K 5K
patch 2.7.6 288 224K 110K 72 54K 25K 288 224K 110K 288 261K 147K 288 168K 71K 128 104K 53K
plotutils 2.6 864 168K 36K 216 42K 9K 864 170K 36K 864 171K 37K 864 145K 24K 384 75K 16K
readline 7.0 576 353K 168K 144 88K 42K · · · 576 375K 186K · · · 256 158K 77K
recutils 1.7 3K 1,776K 241K 720 446K 58K 3K 1,777K 241K 3K 1,984K 277K · · · 1K 812K 111K
sed 4.5 288 188K 96K 72 46K 22K · · · 288 225K 131K · · · 128 88K 46K
sharutils 4.15.2 1K 581K 98K 288 136K 21K 1K 583K 97K 1K 710K 136K 1K 404K 57K 512 278K 49K
spell 1.1 288 35K 3K 72 9K 864 288 36K 3K 288 36K 4K 288 33K 3K 128 16K 2K
tar 1.30 576 556K 300K 144 135K 70K 576 555K 300K 576 661K 388K 576 439K 235K 256 257K 142K
texinfo 6.5 288 113K 47K 72 28K 11K 288 114K 47K 288 131K 63K 288 93K 35K 128 52K 22K
time 1.9 288 37K 6K 72 9K 1K 288 38K 6K 288 39K 8K 288 32K 3K 128 17K 3K
units 2.16 288 102K 37K 72 26K 9K 288 102K 37K 288 103K 37K 288 86K 26K 128 46K 16K
wdiff 1.2.2 288 62K 12K 72 15K 3K 288 62K 12K 288 65K 15K 288 50K 8K 128 28K 6K
which 2.21 288 41K 8K 72 10K 2K 288 42K 8K 288 43K 9K 288 37K 5K 128 19K 3K
xorriso 1.4.8 288 921K 784K 72 226K 190K 288 920K 783K 288 990K 851K 288 590K 473K 128 420K 358K

Total 68K 34,356K 8,708K 17K 8,350K 2,061K 36K 23,091K 7,766K 68K 38,617K 10,291K 25K 12,280K 3,375K 30K 15,809K 4,055K

· The dot symbol (·) denotes that these packages were unable to be compiled due to architecture-specific code or incompatible dependencies.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, NOVEMBER 2020 23

Dongkwan Kim is a freelancer security re-
searcher. He received a Ph.D. from the School of
Electrical Engineering at Korea Advanced Insti-
tute of Science and Technology (KAIST). His re-
search interests include securing software, em-
bedded & cyber-physical systems, and cellular
infrastructures. He competed in various hack-
ing contests, such as DEFCON, Codegate, and
Whitehat Contest.

Eunsoo Kim is a security researcher at Sam-
sung Research. He received a Ph.D. from the
Graduate School of Information Security at
KAIST. His research interests include finding vul-
nerabilities in various software and embedded
systems.

Sang Kil Cha is an associate professor of
Computer Science at KAIST. He completed his
Ph.D. in the Electrical & Computer Engineer-
ing department of Carnegie Mellon University.
His current research interests revolve mainly
around software security, software engineering,
and program analysis. He received an ACM dis-
tinguished paper award in 2014. He is currently
supervising GoN and KaisHack, which are, re-
spectively, undergraduate and graduate hacking
team at KAIST.

Sooel Son is an associate professor of School
of Computing at KAIST. He received his Ph.D.
in the department of computer science at the
University of Texas at Austin. He is working on
various topics regarding web security and pri-
vacy.

Yongdae Kim is a Professor in the Department
of Electrical Engineering, and an affiliate pro-
fessor in the Graduate School of Information
Security, KAIST. He received a Ph.D. degree
from the computer science department at the
University of Southern California. Between 2002
and 2012, he was a professor in the Depart-
ment of Computer Science and Engineering at
the University of Minnesota - Twin Cities. Be-
fore coming to the US, he worked 6 years in
ETRI for securing Korean cyber-infrastructure.

He served as a KAIST Chair Professor between 2013 and 2016, and
received NSF career award on storage security and McKnight Land-
Grant Professorship Award from University of Minnesota in 2005. His
main research includes novel attacks and analysis methodologies for
emerging technologies, such as 4G/5G cellular networks, drone/self-
driving cars, and blockchain.

	Introduction
	Binary Code Similarity Analysis
	Features Used in Prior Works
	Presemantic Features
	Semantic Features
	Key Assumptions from Past Research

	Benchmarks Used in Prior Works
	Research Problems and Questions

	Establishing Large-Scale Benchmark and Ground Truth for BCSA (RQ1)
	BinKit: Large-Scale BCSA Benchmark
	Building Ground Truth

	Building an Interpretable Model
	TikNib Overview
	Features Used in TikNib
	Scoring Metric
	Feature Selection
	Experimental Setup

	Presemantic Feature Analysis (RQ2)
	Analysis Result
	Optimization is largely influential
	Compiler version has a small impact
	GCC and Clang have diverse characteristics
	ARM binaries are closer to x86 binaries than MIPS
	Closer optimization levels show similar results
	Extra options have less impact
	Obfuscator-LLVM does not affect CG features
	Comparison target option does matter

	Comparison Against State-of-the-Art Techniques
	Analysis Case Study: Heartbleed (CVE-2014-0160)
	Analyzing Real-World Vulnerabilities on Firmware Images of IoT Devices

	Benefit of Type Information (RQ3)
	Failure Case Inquiry (RQ4)
	Errors in Binary Analysis Tools
	Diversity of Compiler Back-ends
	Architecture-Specific Code

	Discussion
	Conclusion
	References
	Appendix A: Additional Results
	Biographies
	Dongkwan Kim
	Eunsoo Kim
	Sang Kil Cha
	Sooel Son
	Yongdae Kim

